
Web Security and You
By: Eli White

CTO & Founding Partner: 
 musketeers.me

Managing Editor & Conference Chair: 
 php[architect]

!
!

eliw.com - @EliW

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

About Security
Do we really need to worry about this?

!

!2

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Security? Bah!

!3

!

Whether big or small.

Someone will try to hack you!

!It only takes one person!

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

The Open Web Application Security Project

!4

!
http://owasp.org/

!The best online resource for learning about various attack vectors and solutions to them.

!

Use good judgement though, often

wiki-user edited ‘solutions’.

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Stupid Programmer Errors
Let’s clear the air on these first …

!

!5

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Unchecked Permissions

Direct URL access to a protected file

!6

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Unchecked Permissions

Ability to URL-hack to access unauthorized data.

!7

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Information leaks

Specifically: Visible Error Handling

!8

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Low Security Hashes (Encryption)

!9

!

Don’t just use MD5!

!
So many other options: SHA512 SHA256 Blowfish etc! !Heck, even SHA1 is better!

!Always salt your hashes!

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Various Attack Vectors
Now moving on to true ‘attacks’ …

!

!10

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

SQL Injection

!11

!

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Security Hole:
$pdo->query("SELECT * FROM users
 WHERE name = '{$_POST['name']}' AND pass = '{$_POST['pass']}'");  

The Attack:
$_GET['name'] = "' or 1=1; //";

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

SQL Injection

!12

!

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Solution:
$query = $pdo->prepare("SELECT * FROM users WHERE name = ? AND pass = ?");  
$query->execute(array($_POST['name'], $_POST['pass']));  

$name = $pdo->quote($_POST['name']);  
$pass = $pdo->quote($_POST['pass']);  
$pdo->query("SELECT * FROM users WHERE name = {$name} AND pass = {$pass}");  

or

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Other Injection

!13

!

Command Injection:
The user being able to inject code into a command line.

!
Unchecked File Uploads: The user being allowed to upload an executable file.

!
Code Injection: User being able to directly inject code. (DON’T USE EVAL!)

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Session Hijacking

!14

!
One user ‘becoming’ another by taking over their session via impersonation.

!

Avoid “Session Fixation”

Don’t use URL cookies for your sessions. !Always regenerate Session IDs
on a change of access level.

!
Save an anti-hijack token to another cookie & session. Require it to

be present & match. Salt on unique data (such as User Agent)

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Session Fixation

!15

!

A user being able to provide a known

session ID to another user.

The Attack:

session.use_cookies = 1
session.use_only_cookies = 1
session.cookie_httponly = 1

The Solution: !

Don’t use URL cookies for your sessions.

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Session Fixation (Take 2)

!16

!
Protect from more complicated fixation attacks, by

regenerating sessions on change of access level.

The Solution:

and

session_start();  
if ($user->login($_POST['user'], $_POST['pass'])) {  
 session_regenerate_id(TRUE);  
}  

session_start();  
$user->logout();  
session_regenerate_id(TRUE);  

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Session Anti-Hijack Measures

!17

!

Finally use anti-hijack measures to ensure user is legit

The Solution:

!
Note that IP changes or can be shared.

As happens with most other headers too.

!
Not a few lines of code.

Store whatever unique you can about this user/browser
combination and verify it hasn’t changed between loads.

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Session Anti-Hijack Measures

!18

private function _sessionStart() {  
 session_start();  
 if (!empty($_SESSION)) { // Session not empty, verify: 
 $token = $this->_hijackToken(); 
 $sh = empty($_SESSION['hijack']) ? NULL : $_SESSION['hijack'];  
 $ch = empty($_COOKIE['data']) ? NULL : $_COOKIE['data'];  
 if (!$sh || !$ch || ($sh != $ch) || ($sh != $token)) { // Hijacked! 
 session_write_close();  
 session_id(md5(time()));  
 session_start();  
 setcookie('data', 0, -172800);  
 header("Location: http://www.example.com/");  
 }  
 } else { // Empty/new session, create tokens 
 $_SESSION['started'] = date_format(new DateTime(), DateTime::ISO8601);  
 $_SESSION['hijack'] = $this->_hijackToken(); 
 setcookie('data', $_SESSION['hijack']);  
 }  
}  
 
private function _hijackToken() {  
 $token = empty($_SERVER['HTTP_USER_AGENT']) ? 'N/A' : $_SERVER['HTTP_USER_AGENT'];  
 $token .= '| Hijacking is Bad mmmkay? |'; // Salt  
 $token .= $_SESSION['started']; // Random unique thing to this session 
 return sha1($token);  
}  

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS (Cross Site Scripting)

!19

!

A user sending data that is executed as script

!Many ways this attack can come in, but in all cases: Everything from a user is suspect (forms, user-agent, headers, etc) When fixing, escape to the situation (HTML, JS, XML, etc) FIEO (Filter Input, Escape Output)

!
Don’t forget about rewritten URL strings!

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - Reflected XSS

!20

!
Reflected XSS

Directly echoing back content from the user

The Security Hole:
<p>Thank you for your submission: <?= $_POST['first_name'] ?></p>  

The Attack:

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - Reflected XSS

!21

!
Reflected XSS

Directly echoing back content from the user

The Solution (HTML):
$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - Stored XSS

!22

!
Stored XSS You store the data, then later display it

The Security Hole:
<?php  
$query = $pdo->prepare("UPDATE users SET first = ? WHERE id = 42");  
$query->execute(array($_POST['first_name']));  
?>  

[...]
 
<?php  
$result = $pdo->query("SELECT * FROM users WHERE id = 42");  
$user = $result->fetchObject(); 
?>  
<p>Welcome to <?= $user->first ?>’s Profile</p>  

The Solution (HTML):

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - Stored XSS

!23

!
Stored XSS You store the data, then later display it

$name = htmlentities($user->first, ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($user->first));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $user->first)));  

!

The Same!

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - DOM XSS

!24

!
DOM XSS

What happens in JavaScript, stays in JavaScript

The Security Hole:
<script>  
$('#verify').submit(function() {  
 var first = $(this).find("input[name=first]").val();  
 $(body).append("<p>Thanks for the submission: " + first + "</p>");  
 return false;  
});  
</script>

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

XSS - DOM XSS

!25

!
DOM XSS

What happens in JavaScript, stays in JavaScript

The Solution (Simple):
<script>  
function escapeHTML(str) {  
 str = str + ""; var out = "";  
 for (var i=0; i<str.length; i++) {  
 if (str[i] === '<') { out += '<'; }  
 else if (str[i] === '>') { out += '>'; }  
 else if (str[i] === "'") { out += '''; }  
 else if (str[i] === '"') { out += '"'; }
 else { out += str[i]; }  
 }  
 return out;  
}  
</script> But you have to deal with attr vs HTML vs CSS etc

So use this: https://github.com/chrisisbeef/jquery-encoder/

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

CSRF (Cross Site Request Forgery)

!26

!

A user having the ability to forge or force a

request on behalf of another user.

!
Complicated via JavaScript

!

Simplistically via IMG tag or POST forms

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

CSRF (Cross Site Request Forgery)

!27

!

A user having the ability to forge or force a

request on behalf of another user.

The Attack:
<img width="1" height="1"
 src="http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock!" />  

<script>  
$.post({  
 url: 'http://quackr.example.com/quackit',  
 data: { msg: 'CSRF Attacks Rock!'}  
});  
</script>  

or

http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock
http://quackr.example.com/quackit'

!Protect via CSRF token

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

CSRF (Cross Site Request Forgery)

!28

The Solution (on form):
<?php  
function generateToken() {  
 $token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
 $expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
 if (!$token || ($expires < time())) {  
 $token = md5(uniqid(mt_rand(), true));  
 $_SESSION['token'] = $token;  
 }  
 $_SESSION['tokenExpires'] = time() + 14400;  
 return $token;  
}  
?>  
<form method="POST" action="">  
 <input name="msg" value="" />  
 <input type="hidden" name="token" value="<?= generateToken() ?>" />  
 <input type="submit" />  
</form>

!Protect via CSRF token

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

CSRF (Cross Site Request Forgery)

!29

The Solution (on submission):
<?php  
$token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
$expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
$check = empty($_POST['token']) ? false : $_POST['token'];  
 
if ($token && ($token == $check) && ($expires > time())) {  
 // SUCCESS - Process the form 
} else {  
 // FAILURE - Block this: 
 header('HTTP/1.0 403 Forbidden');  
 die;  
}  
?>  

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Clickjacking

!30

!One of the newest threats
!

Lots of publicity when Twitter was hit

!Tricks user into physically making a click on the remote website
without realizing it, getting around any CSRF protection.

!

Watch a demo:

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Clickjacking

!31

iframe { opacity: 0 }

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Clickjacking - Solution 1

!32

The Solution:

!
Use specific header, to disallow site framing:

header('X-Frame-Options: DENY');
!
!
!
 
header('X-Frame-Options: SAMEORIGIN');

or

!

Doesn’t work in all browsers!
!

Became IETF standard RFC 7034 in October 2013	

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Clickjacking - Solution 2

!33

The Solution:
<html>  
 <head>  
 <style> body { display : none;} </style>  
 </head>  
 <body>  
 <script>  
 if (self == top) {  
 var theBody = document.getElementsByTagName('body')[0];  
 theBody.style.display = "block";  
 } else {  
 top.location = self.location;  
 } 
 </script> 
 </body>  
</html>  

!
Ensure you aren’t displayed in iFrame

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Brute Force Attacks (Password)

!34

!

CAPTCHA
!

IP rate limiting

Really only two primary defenses:

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Brute Force Attacks (CAPTCHA)

!35

On the Form:

!reCAPTCHA is free and easy to use

<?php require_once('recaptchalib.php'); ?>  
<form method="POST" action="">  
 <label>Username: <input name="user" /></label>
 
 <label>Password: <input name="pass" type="password"/></label>
 
 <?= recaptcha_get_html("YOUR-PUBLIC-KEY"); ?>  
 <input type="submit" />  
</form>  

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Brute Force Attacks (CAPTCHA)

!36

On the Server:
<?php  
require_once('recaptchalib.php');  
$check = recaptcha_check_answer( 
 "YOUR-PRIVATE-KEY", $_SERVER["REMOTE_ADDR"],  
 $_POST["recaptcha_challenge_field"], $_POST["recaptcha_response_field"]);  
 
if (!$check->is_valid) {  
 die("INVALID CAPTCHA");  
} else {  
 // Yay, it's a human! 
}  
?>

!

https://developers.google.com/recaptcha/docs/php

https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Brute Force Attacks (Rate Limit)

!37

The Solution:

!
Only allow so many fails per IP

$blocked = false;  
$cachekey = 'attempts.'.$_SERVER['REMOTE_ADDR'];  
$now = new DateTime();  
$attempts = $memcached->get($cachekey) ?: [];  
if (count($attempts) > 4) {  
 $oldest = new DateTime($attempts[0]);  
 if ($oldest->modify('+5 minute') > $now) {  
 $blocked = true; // Block them 
 }  
}  
if (!$blocked && $user->login()) {  
 $memcached->delete($cachekey);  
} else {  
 array_unshift($attempts, $now->format(DateTime::ISO8601));  
 $attempts = array_slice($attempts, 0, 5);  
 $memcached->set($cachekey, $attempts);  
}

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Server Level Security
Now moving on to true ‘attacks’ …

!

!38

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Keep Your Stack Patched

!39

!No excuses. Keep all your software up to date!

!

Linux
!

Apache !MySQL

!

PHP !

Python
!

Ruby

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

DDOS & Similar Attacks

!40

!

Good luck!

!Rely on firewall features of your machines & hosting.

!

Hire a good ops team

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Man in the Middle

!41

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Man in the Middle

!42

The Solution: Use SSL

Iterators, ArrayAccess & Countable, Oh My! - Eli White - SkiPHP - January 17th, 2014

Brief Commercial Interruption…

!43

Iterators, ArrayAccess & Countable, Oh My! - Eli White - SkiPHP - January 17th, 2014!44

Back in Print!

php[architect]: http://phparch.com/

   musketeers: http://musketeers.me/

Web Security and You - Eli White - MidwestPHP - March 16th, 2014

Questions?

For this presentation & more:

http://eliw.com/

Twitter: @EliW

!45

Rate this talk! 
https://joind.in/10556

http://musketeers.me/
https://joind.in/10556

