
Caching Best Practices

By: Eli White 
CTO & Founding Partner: 
        musketeers.me

Managing Editor & Conference Chair: 
        php[architect] - phparch.com


!

!

eliw.com - @eliw



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Caching
…why bother?

!2



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!3

Why Caching?

Simply put, it’s necessary to relieve the load from more expensive 
tasks, such as database and API access.	


!

No popular application can survive serving completely dynamic data 
upon every request, so they all cache:

Facebook	

Twitter	

Flickr	

eBay	


WordPress.com	

Wikipedia	

Craigslist	

Youtube	




Caching Best Practices - Eli White - PHP UK - February 21st, 2014!4

It’s often said that there are two hard things in 
computer programming: cache invalidation, 

naming things, and off-by-one errors.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!5

But my Data Changes!

The usual response to why someone can’t cache.	

!

Yet, Facebook can do caching.  So how do they do it?	

!

The trick is in caching small pieces of data that change less 
often, invalidating when it changes, and/or living with stale 
data for short periods of time.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Opcode Caches
…let’s clear the air here first.

!6



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Not this talk
 Not actually what this talk is focused on however…	

!

 PHP recompiles your program every time that it is  
run into a machine readable language, called opcodes.  

          An opcode cache stores the compilation in memory and 
just re-executes it when called a second time.	


!

 Make sure you are running one! 

!7



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Opcode Cache Options

!8

APC (Alternative PHP Cache) - http://pecl.php.net/package/APC	


• Works on PHP 4.0+ –  Windows, Linux, Mac	


• Also includes a user cache (more on this later)  

OPcache - http://php.net/opcache 	


• Works on PHP 5.2+ –  Windows, Linux, Mac	


• Bundled with PHP as of 5.5  

WinCache - http://www.iis.net/expand/WinCacheForPHP	


• Works on PHP 5.2+ – IIS/Windows only

http://pecl.php.net/package/APC
http://php.net/opcache
http://www.iis.net/expand/WinCacheForPHP


Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Caching Methodologies
…so how we do this?

!9



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!10

Caching Methodologies
Whole Page	


• Literally caching the entire generated HTML page.	

• Best left to well configured proxies, not flexible.  

Partial Page	

• Caching snippets of your HTML (widgets) that are static.	

• Allows a broader cache, with a little more flexibility.  

Database Queries	

• A simple method is just to wrap all DB queries in cache.	

• Simpler, more re-usable, but not as flexible as...  

Biggest-Smallest Reusable Object	

• Caching processed data in it’s most re-usable form.	

• More complicated to code, but most flexible.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!11

Briefly:

Yes this cache exists and can give you some gains.	


!

Do not rely upon it, as it’s very specific to the query cached, 
and each database slave has its own.	


!

Also any update invalidates all caches for that table.  Update 
one user and invalidate all user caches.	


MySQL Query Cache



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!12

Nginx is a very fast webserver, and can act as a whole page cache & 
proxy.  Often configured on the same server to serve static files, while 
passing on PHP requests to Apache.	


!

Through the use of PHP-FPM (a standalone process running PHP), you 
can even configure Nginx to host PHP directly.	


!

Varnish is a dedicated caching proxy, often used instead of Nginx for 
that purpose as well.

Nginx, PHP-FPM & Varnish
Briefly:



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!13

Cache Invalidation Strategy

• Easiest & most commonly used.	


• Simply set a time limit for how long the cache will last.	


• Next request for data after expiration, will reload cache.	

!

NOTE: Can cause cache hammering, where multiple rapid requests cause duplicate reload 
requests.  You can attempt to fix this via using locking or other tricks, but 99% of the time, 
it’s OK to just ignore this problem.

time expiration



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!14

Cache Invalidation Strategy

• Proactive approach.	


• Any time that you know you have updated the underlying data, 
expire any cache that included it.	


• Alternatively, don’t just expire but update the cache.

update invalidation



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!15

Cache Invalidation Strategy

• Used by some of the heaviest traffic companies.	


• Usually used in along one of the other strategies.	


• Have scripts that pre-generate your cache objects before they are 
even requested.	


• Can happen upon code push, on a set schedule, or based upon 
site actions (such as a user logging in).

pre-generation



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Caching Code Solutions
…what are our options?

!16



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!17

Common Cache Solutions
APC (or APCu) 
• APC provides an in-memory user variable cache	


• APCu provides just that feature, if running OPcache	


• Stores data local to that webserver only, not shared 	


Memcached 
• A service that handles in-memory cache storage & retrieval	


• Is designed to run as a cluster to distribute load & failures	


Filesystem 
• Store output as text files onto your local filesystem	


• Please Please Please NO



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

APC
…understand some code samples

!18



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!19

APC Common Functions

Full Documentation: http://php.net/apc	

• Store data in APC under a key:  

bool apc_store(string $key, mixed $var [, int $ttl = 0])	


• Similar, but fail if key already existed:  
bool apc_add(string $key, mixed $var [, int $ttl = 0])	


• Fetch a value from the cache:  
mixed apc_fetch(mixed $key [, bool &$success])	


• Delete an existing key (invalidate the cache):  
mixed apc_delete(string $key)

http://php.net/apc


Caching Best Practices - Eli White - PHP UK - February 21st, 2014!20

APC Example

A common use of APC is to store parsed configuration files 
from your codebase that change rarely.

class Config 
{ 
    private $_config; 
     
    public function __construct() { 
        if (!($this->_config = apc_fetch('config.parsed'))) { 
            $parsed = simplexml_load_file('/path/to/config.xml'); 
            $this->_config = $parsed; 
            apc_store('config.parsed', $parsed); 
        } 
    } 
}



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Memcached
…understand some code samples

!21



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!22

Memcached Libraries
There are two libraries in PHP to access Memcached.  

memcache - http://php.net/memcache	


• The original library, commonly available	


• Limited in its functionality, especially in cluster work  

memcached - http://php.net/memcached	


• Updated library written to overcome some needs	


• Much more complete feature set	


• Highly recommended at this point over the original

http://php.net/memcache
http://php.net/memcached


Caching Best Practices - Eli White - PHP UK - February 21st, 2014!23

Configuring Memcached

To start using it, you need to add your server 
configuration (one at a time, or in bulk) via:

The $weight parameter can be used to unevenly 
distribute the keys across your server pool:

public bool Memcached::addServer(string $host, int $port [, int $weight=0]) 
public bool Memcached::addServers(array $servers)

$cache = new Memcached(); 
$cache->addServers([ 
    ['cache1.example.com', 11211, 50], 
    ['192.168.3.1', 11212, 100] 
]);



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!24

Managing Memcached
Expirations can be seconds into the future or a unix timestamp	


• Store data under a key:  
public bool set(string $key, mixed $value [, int $expiration])	


• Similar, but fail if key already existed:  
public bool add(string $key, mixed $value [, int $expiration])	


• Similar, but fail if key doesn’t already exist:  
public bool replace(string $key, mixed $value [, int $expiration])	


• Delete an existing key (invalidate the cache):  
public bool delete(string $key)	


• Fetch a value from the cache:  
public mixed get(string $key)



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!25

Simple Example

$value = "I am caching this\n"; 
$cache->set('my.key', $value, 60*5); // Save this for 5 minutes 
$result = $cache->get('my.key'); 
echo $result; // Works, as long as Memcached was configured 
!

sleep(60*5 + 1); // Past the expiration 
if ($result = $cache->get('my.key')) { 
    // This won't happen, result will be FALSE as it fails 
} else { 
    echo "Failed, no cached data\n"; 
}



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!26

Manipulating Key Values 

If your value is a string, you can prepend/append to it:  
 

If an integer, you can increment or decrement it:  
 ($initial_value will be set if the key doesn’t exist yet)	


!

public bool append ( string $key , string $value )  
public bool prepend ( string $key , string $value )

public int increment ( string $key [, int $offset = 1   
     [, int $initial_value = 0 [, int $expiry = 0 ]]] )  
 
public int decrement ( string $key [, int $offset = 1  
     [, int $initial_value = 0 [, int $expiry = 0 ]]] )  



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!27

Read Through Cache Callback
A 2nd parameter to get() can be passed in: a callback that 
will be used if the key cannot be found and will be used to 
generate/store/return the value atomically.

If you return true, the $value is set() for you with 
unlimited expiration.  If you don’t want this, you need to 
manually make the set() call yourself, and return false.

$user = $cache->get('user.1234', function ($memcache, $key, &$value) { 
    $userid = substr($key, 5); 
    $value = new User($userid); // Assuming a User class 
    return true; 
});



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!28

Check and Set Operations

It’s possible to only set a key’s value, if it hasn’t changed 
since reading it, allowing cache protection.

Provide a variable to be filled with an access token, then 
pass the token into cas() when ready to update:

public mixed get(string $key [, callable $cache_cb [, float &$cas_token]]) 
public bool cas(float $cas_token , string $key , mixed $value [, int $expiration])

$token = null; 
$user = $cache->get('user.1234', null, $token); 
/* Perform a bunch of tasks, decide to resave the user cache */ 
$cache->cas($token, 'user.1234', $user, 60*5); 
/* 'user.1234' will only be updated if no other process changed it */



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!29

Asynchronous Fetching

For extra performance, you can issue a request for multiple keys 
via getDelayed(), then read the values, one at a time with 
fetch(), or all at once with fetchAll(), when ready.	

public bool getDelayed (array $keys [, bool $with_cas [, callable $value_cb ] ])  
public array fetch ( void )  
public array fetchAll ( void )

$cache->getDelayed(['user.1234', 'user.42', 'user.314']);  
/* Do a bunch of other tasks while this runs */ 
while ($cache->getResultCode() != Memcached::RES_END) {  
    if ($user = $cache->fetch()) {  
        /* We got the result, process as desired */ 
    } else {  
        usleep(10); // Don't tight loop  
    }  
}



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!30

Other Useful Features

Ability to set/get/delete multiple keys at once:  
  public mixed getMulti(array $keys [, array &$cas_tokens [, int $flags]])  
  public bool setMulti(array $items [, int $expiration])  
  public bool deleteMulti( array $keys [, int $time = 0])	

Reset a cache expiry without changing the data:  
  public bool touch(string $key, int $expiration)	


Invalidate the entire cache at once:  
  public bool flush([int $delay = 0])

Still not everything: http://php.net/memcached

http://php.net/memcached


Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Combination Techniques
…getting more advanced now

!31



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!32

Database Caching Example

As mentioned, an easy strategy is to just cache the 
output directly of a database query. For example:

function getUser($userid, PDO $db, Memcached $cache) {  
    $key = "user.{$userid}";  
    if (!($user = $cache->get($key))) {  
        $result = $db->prepare('SELECT * FROM users WHERE id = ?')  
                     ->execute([$userid]);  
        $user = $result->fetchObject();  
        $cache->set($key, $user, 60*5);  
    }  
    return $user;  
}



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!33

More Generic Example

A function to automatically cache any database result:	

 (as long as the query given to it only returned 1 row)

function cachedSingleRowQuery($query, Array $bind, $expiry,  
                              PDO $db, Memcached $cache) {  
    $key = 'SingleQuery' . md5($query) . md5(implode(',', $bind);  
    if (!($obj = $cache->get($key))) {  
        $result = $db->prepare($query)->execute($bind);  
        $obj = $result->fetchObject();  
        $cache->set($key, $obj, $expiry);  
    }  
    return $obj;  
}  



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!34

Concept: Multi-Layer Cache

Some large sites rely heavily on the idea of a multiple layer 
cache, where items are cached in multiple spots, each 
successively faster, but more restricted in use.  
 	

A common 3 layer cache technique:	


• Store a copy in PHP instance	

• Store a copy in APC (quick expiration)	

• Store a copy in Memcached (longer expiration)	

• Worst case default back to database.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!35

class MultiCache  
{  
    private $this->_store = [];  
    private $this->_db;  
    private $this->_memcache;  
     
    public function __construct(PDO $db, Memcached $memcache) {  
        $this->_db = $db;  
        $this->_memcache = $memcache;  
    }  
     
    public function query($query, Array $bind) {  
        $key = 'MultiCache' . md5($query);  
        if (empty($this->_store[$key])) {  
            if (!($this->_store[$key] = apc_fetch($key))) {  
                if (!($this->_store[$key] = $this->_memcache->get($key))) {  
                    $result = $this->_db->prepare($query)->execute($bind);  
                    $this->_store[$key] = $result->fetchObject();  
                    apc_store($key, $this->_store[$key], 60*5); // 5 minutes  
                    $this->_memcache->set($key, $obj, 60*60); // 1 hour  
                }  
            }  
        }  
        return $this->_store[$key];  
    }  
}

M
ul

ti-
La

ye
r 

C
ac

he
 E

xa
m

pl
e



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Parting Thoughts
…some things to keep you thinking

!36



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!37

Caching Discussions 

Do not store something in cache that you 
cannot recreate from another source. 	


!

Cache is transient.	




Caching Best Practices - Eli White - PHP UK - February 21st, 2014!38

Caching Discussions 

Beware FALSE.	


!

You cannot check for a false value in memcached 
because it returns false when it can’t find the key. 

If you need to store NULL instead.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!39

Caching Discussions

Consider caching more aggressively for 
anonymous users, than when a user in logged in.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!40

Caching Discussions

Consider having cache expirations be configurable.	

!

Allowing you in times of higher load, to simply 
serve more stale data, versus going down.  	


!

This is a strategy that Twitter uses.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!41

Caching Discussions

Consider adding a configurable prefix to all your keys, so 
that you can easily invalidate data without a flush.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!42

Biggest-Smallest Reusable

Ensure you cache large chunks of data, so you make fewer lookups, 
but data is discrete enough that they can be reused.	


!

On a blog, you might cache an array of all comments to a single 
post, since you will always be displaying them all.	


!

But there are cases (social media) where more queries, for smaller 
data, is more efficient due to constant re-use.



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

Brief Commercial Interruption
… Sorry

!43



Caching Best Practices - Eli White - PHP UK - February 21st, 2014!44

Back in Print!



Caching Best Practices - Eli White - PHP UK - February 21st, 2014

php[architect]: http://phparch.com/

        musketeers: http://musketeers.me/

Questions?

For this presentation & more:

http://eliw.com/ 

Twitter: @EliW

!45

Rate this talk! 
https://joind.in/10694

http://musketeers.me/
http://eliw.com/
https://joind.in/10694

