
www.oneforall.events

Web Security Basics

Eli White
Vice President — One for All Events

@EliW

http://www.oneforall.events

www.oneforall.events

Web Security Basics

Eli White
Vice President — One for All Events

@EliW

http://www.oneforall.events

TITANIUM SPONSORS

Platinum Sponsors

Gold Sponsors

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

About Security
Do we really need to worry about this?

4

5 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

About Security

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Security? Bah!

6

Whether big or small. Someone

will try to hack you!

It only takes one person!

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

The Open Web Application Security Project

7

http://owasp.org/

The best online resource for learning about various attack vectors and solutions to them.

Use good judgement

though, often wiki-user

edited ‘solutions’.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Stupid Programmer
Let’s clear the air on these …

8

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Unchecked Permissions

 Direct URL access to a protected file

9

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Unchecked Permissions

10

 Ability to URL-hack to access unauthorized data.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Information leaks

 Specifically: Visible Error Handling

11

12 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

FIEO

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

FIEO

13

Filter Input, Escape Output

- Filter the data that comes in, so that it’s as expected

- Escape the data going out, so that it’s safe to use

#1 Rule of Web Security!

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Filtering Input

14

More layers of security mean less chance of exploit

- Simplifies security later

- Provides security in depth

- Makes for cleaner data

Filtering is not directly a security measure, but:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Sanitize vs Validate

 Validate
• Check that the data is what was expected (an email

address is an email address), and refuse if not.

 Sanitize
• Attempt to convert the data into an expected value

(convert any strings to integers)

15

Validate:

Sanitize:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

S vs V: Pros & Cons

• Drawback is refusing data that could be figured out.
- Declining ‘301-555-1234’ as a phone number because of dashes
- Refusing ’42 towels’, when asking “How many?”, because non-int

• Drawback is accepting incorrect data
- Converting ‘4.5’ to 4, when converting to integer
- Converting 'yes' to 0, when converting to integer (in some languages)

16

Validation

Sanitization

 There are appropriate times for each option

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Escaping Output

17

Making the output safe to be used

Every type of output needs escaped differently

Must be done appropriate to context

Escaping is actual protection

18 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

SQL Injection

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

SQL Injection

19

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

SQL Injection

20

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Security Hole:
$pdo->query("SELECT * FROM users
 WHERE name = '{$_POST['name']}' AND pass = '{$_POST['pass']}'");  

The Attack:
$_POST['name'] = "' or 1=1; //";

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

SQL Injection

21

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Solution:
$query = $pdo->prepare("SELECT * FROM users WHERE name = ? AND pass = ?");  
$query->execute(array($_POST['name'], $_POST['pass']));  

$name = $pdo->quote($_POST['name']);  
$pass = $pdo->quote($_POST['pass']);  
$pdo->query("SELECT * FROM users WHERE name = {$name} AND pass = {$pass}");  

or:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Other Injection

22

Command Injection:

The user being able to inject code into a command line.

Unchecked File Uploads: The user being allowed to upload an executable file.

Code Injection: User being able to directly inject code. (DON’T USE EVAL!)

23 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS (Cross Site Scripting)

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS (Cross Site Scripting)

24

A user sending data that is executed as script

Many ways this attack can come in, but in all cases: Everything from a user is suspect (forms, user-agent, headers, etc) When fixing, escape to the situation (HTML, JS, XML, etc) FIEO (Filter Input, Escape Output)

Don’t forget about rewritten URL strings!

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - Reflected XSS

25

Reflected XSS
Directly echoing back content from the user

The Security Hole:
<p>Thank you for your submission: <?= $_POST['first_name'] ?></p>  

The Attack:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - Reflected XSS

26

Reflected XSS Directly echoing back content from the user

The Solution (HTML):
$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Wait, why is this a problem?

 The user can only hack themselves, right?

 1) Users can be directed to  
 your website via links.

 2) Also, users can be talked  
 into anything…

27

28 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Wait! Built-in Protection?

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - Stored XSS

29

Stored XSS You store the data, then later display it
The Security Hole:

<?php  
$query = $pdo->prepare("UPDATE users SET first = ? WHERE id = 42");  
$query->execute(array($_POST['first_name']));  
?>  

[...]
 
<?php  
$result = $pdo->query("SELECT * FROM users WHERE id = 42");  
$user = $result->fetchObject(); 
?>  
<p>Welcome to <?= $user->first ?>’s Profile</p>  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - Stored XSS

30

The Same!

Stored XSS You store the data, then later display it
The Solution (HTML):

$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - DOM XSS

31

DOM XSS What happens in JavaScript, stays in JavaScript

The Security Hole:
<script>  
$('#verify').submit(function() {  
 var first = $(this).find("input[name=first]").val();  
 $(body).append("<p>Thanks for the submission: " + first + "</p>");  
 return false;  
});  
</script>

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

XSS - DOM XSS

32

The Solution (Simple):
<script>  
function escapeHTML(str) {  
 str = str + ""; var out = "";  
 for (var i=0; i<str.length; i++) {  
 if (str[i] === '<') { out += '<'; }  
 else if (str[i] === '>') { out += '>'; }  
 else if (str[i] === "'") { out += '''; } 
 else if (str[i] === '"') { out += '"'; }
 else { out += str[i]; }  
 }  
 return out;  
}  
</script> But you have to deal with attr vs HTML vs CSS etc

So use this: https://github.com/chrisisbeef/jquery-encoder/

DOM XSS What happens in JavaScript, stays in JavaScript

33 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

CSRF (Cross Site Request Forgery)

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

CSRF (Cross Site Request Forgery)

34

A user having the ability to forge or force a

request on behalf of another user.

Complicated via JavaScript

Simplistically via IMG tag or POST forms

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

CSRF (Cross Site Request Forgery)

35

A user having the ability to forge or force a
request on behalf of another user.

The Attack:
<img width="1" height="1"
 src="http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock!" />  

<script>  
$.post({  
 url: 'http://quackr.example.com/quackit',  
 data: { msg: 'CSRF Attacks Rock!'}  
});  
</script>  

or

http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock
http://quackr.example.com/quackit'

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Protect via CSRF token

CSRF (Cross Site Request Forgery)

36

The Solution (on form):
<?php  
function generateToken() {  
 $token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
 $expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
 if (!$token || ($expires < time())) {  
 $token = md5(uniqid(mt_rand(), true));  
 $_SESSION['token'] = $token;  
 }  
 $_SESSION['tokenExpires'] = time() + 14400;  
 return $token;  
}  
?>  
<form method="POST" action="">  
 <input name="msg" value="" />  
 <input type="hidden" name="token" value="<?= generateToken() ?>" />  
 <input type="submit" />  
</form>

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Protect via CSRF token

CSRF (Cross Site Request Forgery)

37

The Solution (on submission):

<?php  
$token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
$expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
$check = empty($_POST['token']) ? false : $_POST['token'];  
 
if ($token && ($token == $check) && ($expires > time())) {  
 // SUCCESS - Process the form 
} else {  
 // FAILURE - Block this: 
 header('HTTP/1.0 403 Forbidden');  
 die;  
}  
?>  

38 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Clickjacking

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

February 2009

Clickjacking

39

One of the ‘newer’ threats
Lots of publicity when Twitter was hit

Tricks user into physically making a click on the remote website without realizing it, getting around any CSRF protection.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 201740

Twitter
Attack

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Clickjacking

41

iframe { opacity: 0 }

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Clickjacking - Solution 1

42

The Solution:

Use specific header, to disallow site framing:

header('X-Frame-Options: DENY');

 
header('X-Frame-Options: SAMEORIGIN');

or

Became IETF standard RFC 7034 in October 2013

Doesn’t work in all browsers!

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Clickjacking - Solution 2

43

The Solution:
<html>  
 <head>  
 <style> body { display : none;} </style> 
 </head>  
 <body>  
 <script>  
 if (self == top) {  
 var theBody = document.getElementsByTagName('body')[0];  
 theBody.style.display = "block";  
 } else {  
 top.location = self.location;  
 } 
 </script> 
 </body>  
</html>  

Ensure you aren’t displayed in iFrame

44 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Protection

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

- Don’t restrict people from using letters, 

 numbers, special characters or spaces
 

- OK to have a minimum length but not max

 

- Requiring mixed symbols can help, but  

 makes hard to remember

Best Password Practices

45

Rules for Passwords:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 201746

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Hashing

47

Do not store plain text passwords

Always 1-way hash

Do not just use MD5! Highly vulnerable to rainbow tables

Don’t even use SHA1

The longer your hashing takes to run,  

the longer it takes for someone to crack it!

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Secondary Measures

48

- Showing a known photo on login

- Asking for date of birth

- Asking for first place of residence

- etc…

Typically used to thwart phishing attempts

All have mixed effectiveness

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

2-factor Authentication

 Having something beyond username/password to ensure
authentication is valid. Requires extra information that the
user must have on them.

 Originally involved keyfobs, or other physical devices that
had to be plugged into the computer.

 Today most commonly is done as sending an SMS to the
user (Facebook), or via a token generator such as Google
Authenticator for smartphones.

49

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Implementing 2FA

• Use Amazon SNS to send SMS upon login

• Use Twilio API to send SMS (or phone call)

• Use Google Authenticator Libraries:
- http://code.google.com/p/ga4php/
- https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

50

SMS Method:

Token Based 2FA:

http://code.google.com/p/ga4php/
https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

51 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Brute Force

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Brute Force Attacks (Password)

52

CAPTCHA
IP rate limiting

Really only two primary defenses:

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Brute Force Attacks (CAPTCHA)

53

On the Form:

reCAPTCHA is free and easy to use

<?php require_once('recaptchalib.php'); ?>  
<form method="POST" action="">  
 <label>Username: <input name="user" /></label>
 
 <label>Password: <input name="pass" type="password"/></label>
  
 <?= recaptcha_get_html("YOUR-PUBLIC-KEY"); ?>  
 <input type="submit" />  
</form>  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Brute Force Attacks (CAPTCHA)

54

On the Server:
<?php  
require_once('recaptchalib.php');  
$check = recaptcha_check_answer( 
 "YOUR-PRIVATE-KEY", $_SERVER["REMOTE_ADDR"],  
 $_POST["recaptcha_challenge_field"], $_POST["recaptcha_response_field"]); 
 
if (!$check->is_valid) {  
 die("INVALID CAPTCHA");  
} else {  
 // Yay, it's a human! 
}  
?>

https://developers.google.com/recaptcha/docs/php

https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Brute Force Attacks (Rate Limit)

55

The Solution:
Only allow so many fails per IP

$blocked = false;  
$cachekey = 'attempts.'.$_SERVER['REMOTE_ADDR'];  
$now = new DateTime();  
$attempts = $memcached->get($cachekey) ?: [];  
if (count($attempts) > 4) {  
 $oldest = new DateTime($attempts[0]);  
 if ($oldest->modify('+5 minute') > $now) {  
 $blocked = true; // Block them 
 }  
}  
if (!$blocked && $user->login()) {  
 $memcached->delete($cachekey);  
} else {  
 array_unshift($attempts, $now->format(DateTime::ISO8601));  
 $attempts = array_slice($attempts, 0, 5);  
 $memcached->set($cachekey, $attempts);  
}

56 Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

System Level  
Security

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Filesystem Security

57

Make sure your web server

does not run as ‘root’

The user it runs as should only have access to the ‘web’ directory

Commonly ignored, but offers great security-in-depth

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Database Security

58

Same advice:

Make sure the database user only 

 has permissions that it needs.

Consider: Make the normal DB user only have read access.  
Use separate connections with another user for writing.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Keep Your Stack Patched

59

No excuses. Keep all your software up to date!

Linux

Apache MySQL
PHP

Python
Ruby

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

DDOS & Similar Attacks

60

Good luck!

Rely on firewall features of your machines & hosting.

Hire a good ops team

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Man in the Middle

61

Icons made by Freepik from www.flaticon.com

http://www.freepik.com/
http://www.flaticon.com/

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Man in the Middle

62

Icons made by Freepik from www.flaticon.com

The Solution: Use SSL

http://www.freepik.com/
http://www.flaticon.com/

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Session Protection

63

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Session Hijacking

64

One user ‘becoming’ another by taking
over their session via impersonation.

Avoid “Session Fixation”

Don’t use URL cookies for your sessions. Always regenerate Session IDs on a
change of access level.

Save an anti-hijack token to another cookie & session. Require it to
be present & match. Salt on unique data (such as User Agent)

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Session Fixation

65

A user being able to provide a known

session ID to another user.

The Attack:

session.use_cookies = 1
session.use_only_cookies = 1

The Solution:

Don’t use URL cookies for your sessions.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Session Fixation (Take 2)

66

Protect from more complicated fixation attacks, by
regenerating sessions on change of access level.

The Solution:

and

session_start();  
if ($user->login($_POST['user'], $_POST['pass'])) {  
 session_regenerate_id(TRUE);  
}  

session_start()  
$user->logout();  
session_regenerate_id(TRUE);  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Session Anti-Hijack Measures

67

Finally use anti-hijack measures to ensure user is legit

Note that IP changes or can be shared.

As happens with most other headers too.

Not a few lines of code. Store whatever unique you can about this user/browser combination and verify it hasn’t changed between loads.

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Se
ss

io
n

A
nt

i-H
ija

ck
 .

 M

ea
su

re
s

68

private function _sessionStart() {  
 session_start();  
 if (!empty($_SESSION)) { // Session not empty, verify: 
 $token = $this->_hijackToken(); 
 $sh = empty($_SESSION['hijack']) ? NULL : $_SESSION['hijack'];  
 $ch = empty($_COOKIE['data']) ? NULL : $_COOKIE['data'];  
 if (!$sh || !$ch || ($sh != $ch) || ($sh != $token)) { // Hijacked! 
 session_write_close();  
 session_id(sha1(uniqid(rand(), TRUE)));  
 session_start();  
 setcookie('data', 0, -172800);  
 header("Location: http://www.example.com/");  
 }  
 } else { // Empty/new session, create tokens 
 $_SESSION['started'] = date_format(new DateTime(), DateTime::ISO8601);  
 $_SESSION['hijack'] = $this->_hijackToken(); 
 setcookie('data', $_SESSION['hijack']);  
 }  
}  
 
private function _hijackToken() {  
 $token = empty($_SERVER['HTTP_USER_AGENT']) ? 'N/A' : $_SERVER['HTTP_USER_AGENT'];  
 $token .= '| Hijacking is Bad mmmkay? |'; // Salt  
 $token .= $_SESSION['started']; // Random unique thing to this session 
 return sha1($token);  
}  

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Tips for Recovery
Wait, you just got a 2am phone call?

69

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Logging

70

You can’t react, if you don’t know what happened!

Log everything you can: Failed SQL queries
Detected hijack attempts Code (PHP) errors
Failed server connections

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Plans of Action

71

Be ready for a quick decision!

Shutdown Website

Remove Functionality
Let it Live

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Thank you very much!
But a brief commercial interruption

72

PHP[TEK] 2017
world.phparch.com

23%

OFF $325

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Questions?

74

One for All Events: 
www.oneforall.events

For this presentation & more:

eliw.com

Twitter: @EliW

https://www.oneforall.events/
http://eliw.com/
https://twitter.com/EliW

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Protection
Additional Information

75

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Hashing (Manually)

 Use a more secure algorithm, such as sha512:

76

$str = "This is my secret data";  
$hash = hash('sha512', $str);  

Find a full list of supported algorithms via:
var_dump(hash_algos());  

Always generate & add a salt, to beat rainbow tables:

$password = "MyVoiceIsMyPassport";  
 
// Simple salt:  
$salt = "PHP FOR LIFE";  
$hash = hash('sha512', $salt . $password);  
 
// More fancy & Unique  
$salt = hash('sha1', uniqid(rand(), TRUE));  
$hash = $salt . hash('sha512', $salt . $password);  

PHP <5.5

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Hashing PHP 5.5
PHP 5.5 has a built in password_hash function, that takes
care of salting, has a configurable cost, and provides
mechanisms for upgrading algorithms in the future:

77

string password_hash (string $password , integer $algo [, array $options])

Sample Usage:
$hash = password_hash('MyVoiceIsMyPassport', PASSWORD_DEFAULT);  
$hash = password_hash('rootroot', PASSWORD_DEFAULT, ['cost' => 12]);  

http://php.net/password

boolean password_verify (string $password , string $hash)

http://php.net/password

Web Security Basics - Eli White - Kansas City Developer Conference - August 2nd, 2017

Password Hashing PHP 5.5

 Also allows for upgrade paths for password security via
the password_needs_rehash() function:

78

$options = ['cost' => 12];
if (password_verify($password, $hash)) {
 // Success - Log them in, but also check for rehash:
 if (password_needs_rehash($hash, PASSWORD_DEFAULT, $options)) {
 // The password was old, rehash it:
 $rehash = password_hash($password, PASSWORD_DEFAULT, $options);
 // Save this password back to the database now
 }
} else {
 // Failure, do not log them in.
}

