
Caching Best Practices

By: Eli White
CTO & Founding Partner: 
 musketeers.me
Managing Editor & Conference Chair: 
 php[architect] - phparch.com

eliw.com - @eliw

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Caching
…why bother?

2

Caching Best Practices - Eli White - Midwest PHP - March 5th, 20163

Why Caching?

Simply put, it’s necessary to relieve the load from more expensive
tasks, such as database and API access.

No popular application can survive serving completely dynamic data
upon every request, so they all cache:

Facebook
Twitter
Flickr
eBay

WordPress.com
Wikipedia
Craigslist
Youtube

Caching Best Practices - Eli White - Midwest PHP - March 5th, 20164

It’s often said that there are two hard things in
computer programming: cache invalidation,

naming things, and off-by-one errors.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 20165

But my Data Changes!

The usual response to why someone can’t cache.

Yet, Facebook can do caching. So how do they do it?

The trick is in caching small pieces of data that change less
often, invalidating when it changes, and/or living with stale
data for short periods of time.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Opcode Caches
…let’s clear the air here first.

6

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Not this talk
 Not actually what this talk is focused on however…

 PHP recompiles your program every time that it is  
run into a machine readable language, called opcodes.  

 An opcode cache stores the compilation in memory and
just re-executes it when called a second time.

 Make sure you are running one!

7

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Opcode Cache Options

8

APC (Alternative PHP Cache) - http://pecl.php.net/package/APC

• Works on PHP 4.0+ – Windows, Linux, Mac

• Also includes a user cache (more on this later)  

OPcache - http://php.net/opcache

• Works on PHP 5.2+ – Windows, Linux, Mac

• Bundled with PHP as of 5.5  

WinCache - http://www.iis.net/expand/WinCacheForPHP

• Works on PHP 5.2+ – IIS/Windows only

http://pecl.php.net/package/APC
http://php.net/opcache
http://www.iis.net/expand/WinCacheForPHP

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Caching Methodologies
…so how we do this?

9

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201610

Caching Methodologies
Whole Page
• Literally caching the entire generated HTML page.
• Best left to well configured proxies, not flexible.  

Partial Page
• Caching snippets of your HTML (widgets) that are static.
• Allows a broader cache, with a little more flexibility.  

Database Queries
• A simple method is just to wrap all DB queries in cache.
• Simpler, more re-usable, but not as flexible as...  

Biggest-Smallest Reusable Object
• Caching processed data in it’s most re-usable form.
• More complicated to code, but most flexible.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201611

Briefly:

Yes this cache exists and can give you some gains.

Do not rely upon it, as it’s very specific to the query cached,
and each database slave has its own.

Also any update invalidates all caches for that table. Update
one user and invalidate all user caches.

MySQL Query Cache

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201612

Nginx is a very fast webserver, and can act as a whole page cache &
proxy. Often configured on the same server to serve static files, while
passing on PHP requests to Apache.

Through the use of PHP-FPM (a standalone process running PHP), you
can even configure Nginx to host PHP directly.

Varnish is a dedicated caching proxy, often used instead of Nginx for
that purpose as well.

Nginx, PHP-FPM & Varnish
Briefly:

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201613

Cache Invalidation Strategy

• Easiest & most commonly used.

• Simply set a time limit for how long the cache will last.

• Next request for data after expiration, will reload cache.

NOTE: Can cause cache hammering, where multiple rapid requests cause duplicate reload
requests. You can attempt to fix this via using locking or other tricks, but 99% of the time,
it’s OK to just ignore this problem.

time expiration

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201614

Cache Invalidation Strategy

• Proactive approach.

• Any time that you know you have updated the underlying data,
expire any cache that included it.

• Alternatively, don’t just expire but update the cache.

update invalidation

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201615

Cache Invalidation Strategy

• Used by some of the heaviest traffic companies.

• Usually used in along one of the other strategies.

• Have scripts that pre-generate your cache objects before they are
even requested.

• Can happen upon code push, on a set schedule, or based upon
site actions (such as a user logging in).

pre-generation

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Caching Code Solutions
…what are our options?

16

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201617

Common Cache Solutions
APC (or APCu)
• APC provides an in-memory user variable cache

• APCu provides just that feature, if running OPcache

• Stores data local to that webserver only, not shared

Memcached
• A service that handles in-memory cache storage & retrieval

• Is designed to run as a cluster to distribute load & failures

Filesystem
• Store output as text files onto your local filesystem

• Please Please Please NO

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

APC
…understand some code samples

18

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201619

APC Common Functions

Full Documentation: http://php.net/apc
• Store data in APC under a key:  

bool apc_store(string $key, mixed $var [, int $ttl = 0])

• Similar, but fail if key already existed:  
bool apc_add(string $key, mixed $var [, int $ttl = 0])

• Fetch a value from the cache:  
mixed apc_fetch(mixed $key [, bool &$success])

• Delete an existing key (invalidate the cache):  
mixed apc_delete(string $key)

http://php.net/apc

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201620

APC Example

A common use of APC is to store parsed configuration files
from your codebase that change rarely.

class Config
{
 private $_config;

 public function __construct() {
 if (!($this->_config = apc_fetch('config.parsed'))) {
 $parsed = simplexml_load_file('/path/to/config.xml');
 $this->_config = $parsed;
 apc_store('config.parsed', $parsed);
 }
 }
}

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Memcached
…understand some code samples

21

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201622

Memcached Libraries
There are two libraries in PHP to access Memcached.  

memcache - http://php.net/memcache

• The original library, commonly available

• Limited in its functionality, especially in cluster work  

memcached - http://php.net/memcached

• Updated library written to overcome some needs

• Much more complete feature set

• Highly recommended at this point over the original

http://php.net/memcache
http://php.net/memcached

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201623

Configuring Memcached

To start using it, you need to add your server
configuration (one at a time, or in bulk) via:

The $weight parameter can be used to unevenly
distribute the keys across your server pool:

public bool Memcached::addServer(string $host, int $port [, int $weight=0])
public bool Memcached::addServers(array $servers)

$cache = new Memcached();
$cache->addServers([
 ['cache1.example.com', 11211, 50],
 ['192.168.3.1', 11212, 100]
]);

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201624

Managing Memcached
Expirations can be seconds into the future or a unix timestamp

• Store data under a key:  
public bool set(string $key, mixed $value [, int $expiration])

• Similar, but fail if key already existed:  
public bool add(string $key, mixed $value [, int $expiration])

• Similar, but fail if key doesn’t already exist:  
public bool replace(string $key, mixed $value [, int $expiration])

• Delete an existing key (invalidate the cache):  
public bool delete(string $key)

• Fetch a value from the cache:  
public mixed get(string $key)

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201625

Simple Example

$value = "I am caching this\n";
$cache->set('my.key', $value, 60*5); // Save this for 5 minutes
$result = $cache->get('my.key');
echo $result; // Works, as long as Memcached was configured

sleep(60*5 + 1); // Past the expiration
if ($result = $cache->get('my.key')) {
 // This won't happen, result will be FALSE as it fails
} else {
 echo "Failed, no cached data\n";
}

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201626

Manipulating Key Values

If your value is a string, you can prepend/append to it:  
 

If an integer, you can increment or decrement it:  
 ($initial_value will be set if the key doesn’t exist yet)

public bool append (string $key , string $value)  
public bool prepend (string $key , string $value)

public int increment (string $key [, int $offset = 1  
 [, int $initial_value = 0 [, int $expiry = 0]]])  
 
public int decrement (string $key [, int $offset = 1  
 [, int $initial_value = 0 [, int $expiry = 0]]])  

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201627

Read Through Cache Callback
A 2nd parameter to get() can be passed in: a callback that
will be used if the key cannot be found and will be used to
generate/store/return the value atomically.

If you return true, the $value is set() for you with
unlimited expiration. If you don’t want this, you need to
manually make the set() call yourself, and return false.

$user = $cache->get('user.1234', function ($memcache, $key, &$value) {
 $userid = substr($key, 5);
 $value = new User($userid); // Assuming a User class
 return true;
});

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201628

Check and Set Operations

It’s possible to only set a key’s value, if it hasn’t changed
since reading it, allowing cache protection.

Provide a variable to be filled with an access token, then
pass the token into cas() when ready to update:

public mixed get(string $key [, callable $cache_cb [, float &$cas_token]])
public bool cas(float $cas_token , string $key , mixed $value [, int $expiration])

$token = null;
$user = $cache->get('user.1234', null, $token);
/* Perform a bunch of tasks, decide to resave the user cache */
$cache->cas($token, 'user.1234', $user, 60*5);
/* 'user.1234' will only be updated if no other process changed it */

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201629

Asynchronous Fetching

For extra performance, you can issue a request for multiple keys
via getDelayed(), then read the values, one at a time with
fetch(), or all at once with fetchAll(), when ready.
public bool getDelayed (array $keys [, bool $with_cas [, callable $value_cb]])  
public array fetch (void)  
public array fetchAll (void)

$cache->getDelayed(['user.1234', 'user.42', 'user.314']);  
/* Do a bunch of other tasks while this runs */ 
while ($cache->getResultCode() != Memcached::RES_END) {  
 if ($user = $cache->fetch()) {  
 /* We got the result, process as desired */ 
 } else {  
 usleep(10); // Don't tight loop  
 }  
}

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201630

Other Useful Features

Ability to set/get/delete multiple keys at once:  
 public mixed getMulti(array $keys [, array &$cas_tokens [, int $flags]])  
 public bool setMulti(array $items [, int $expiration])  
 public bool deleteMulti(array $keys [, int $time = 0])

Reset a cache expiry without changing the data:  
 public bool touch(string $key, int $expiration)

Invalidate the entire cache at once:  
 public bool flush([int $delay = 0])

Still not everything: http://php.net/memcached

http://php.net/memcached

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Combination Techniques
…getting more advanced now

31

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201632

Database Caching Example

As mentioned, an easy strategy is to just cache the
output directly of a database query. For example:

function getUser($userid, PDO $db, Memcached $cache) {  
 $key = "user.{$userid}";  
 if (!($user = $cache->get($key))) {  
 $result = $db->prepare('SELECT * FROM users WHERE id = ?')  
 ->execute([$userid]);  
 $user = $result->fetchObject();  
 $cache->set($key, $user, 60*5);  
 }  
 return $user;  
}

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201633

More Generic Example

A function to automatically cache any database result:
 (as long as the query given to it only returned 1 row)

function cachedSingleRowQuery($query, Array $bind, $expiry,  
 PDO $db, Memcached $cache) {  
 $key = 'SingleQuery' . md5($query) . md5(implode(',', $bind);  
 if (!($obj = $cache->get($key))) {  
 $result = $db->prepare($query)->execute($bind);  
 $obj = $result->fetchObject();  
 $cache->set($key, $obj, $expiry);  
 }  
 return $obj;  
}  

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201634

Concept: Multi-Layer Cache

Some large sites rely heavily on the idea of a multiple layer
cache, where items are cached in multiple spots, each
successively faster, but more restricted in use.  

A common 3 layer cache technique:

• Store a copy in PHP instance
• Store a copy in APC (quick expiration)
• Store a copy in Memcached (longer expiration)
• Worst case default back to database.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201635

class MultiCache  
{  
 private $this->_store = [];  
 private $this->_db;  
 private $this->_memcache;  
  
 public function __construct(PDO $db, Memcached $memcache) {  
 $this->_db = $db;  
 $this->_memcache = $memcache;  
 }  
  
 public function query($query, Array $bind) {  
 $key = 'MultiCache' . md5($query);  
 if (empty($this->_store[$key])) {  
 if (!($this->_store[$key] = apc_fetch($key))) {  
 if (!($this->_store[$key] = $this->_memcache->get($key))) {  
 $result = $this->_db->prepare($query)->execute($bind);  
 $this->_store[$key] = $result->fetchObject();  
 apc_store($key, $this->_store[$key], 60*5); // 5 minutes  
 $this->_memcache->set($key, $obj, 60*60); // 1 hour  
 }  
 }  
 }  
 return $this->_store[$key];  
 }  
}

M
ul

ti-
La

ye
r 

C
ac

he
 E

xa
m

pl
e

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

Parting Thoughts
…some things to keep you thinking

36

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201637

Caching Discussions

Do not store something in cache that you
cannot recreate from another source.

Cache is transient.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201638

Caching Discussions

Beware FALSE.

You cannot check for a false value in memcached
because it returns false when it can’t find the key.

If you need to store NULL instead.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201639

Caching Discussions

Consider caching more aggressively for
anonymous users, than when a user in logged in.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201640

Caching Discussions

Consider having cache expirations be configurable.

Allowing you in times of higher load, to simply
serve more stale data, versus going down.

This is a strategy that Twitter uses.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201641

Caching Discussions

Consider adding a configurable prefix to all your keys, so
that you can easily invalidate data without a flush.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 201642

Biggest-Smallest Reusable

Ensure you cache large chunks of data, so you make fewer lookups,
but data is discrete enough that they can be reused.

On a blog, you might cache an array of all comments to a single
post, since you will always be displaying them all.

But there are cases (social media) where more queries, for smaller
data, is more efficient due to constant re-use.

Caching Best Practices - Eli White - Midwest PHP - March 5th, 2016

 php[architect]: www.phparch.com 
musketeers: musketeers.me

Questions?

For this presentation & more:

http://eliw.com/

Twitter: @EliW

43

Rate this talk! 
https://joind.in/16685

http://www.phparch.com
http://musketeers.me
http://eliw.com/
https://joind.in/16685

