
By: Eli White
 CTO & Founding Partner:  
 musketeers.me
 Managing Editor & Conference Chair:  
 php[architect] - phparch.com

eliw.com - @eliw

Web Security and You

http://musketeers.me

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

About Security
Do we really need to worry about this?

2

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Security? Bah!

3

Whether big or small. Someone

will try to hack you!

It only takes one person!

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

The Open Web Application Security Project

4

http://owasp.org/

The best online resource for learning about various attack vectors and solutions to them.

Use good judgement

though, often wiki-user

edited ‘solutions’.

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Password Protection

5

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Password Hashing

6

Do not store plain text passwords

Always 1-way hash

Do not just use MD5! Highly vulnerable to rainbow tables

Don’t even use SHA-1

Don’t even use SHA-512

The longer your hashing takes to run,  

the longer it takes for someone to crack it!

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Password Hashing — PHP 5.5
PHP 5.5 has a built in password_hash function, that takes
care of salting, has a configurable cost, and provides
mechanisms for upgrading algorithms in the future:

7

string password_hash (string $password , integer $algo [, array $options])

Sample Usage:
$hash = password_hash('MyVoiceIsMyPassport', PASSWORD_DEFAULT);  
$hash = password_hash('rootroot', PASSWORD_DEFAULT, ['cost' => 12]);  

http://php.net/password

boolean password_verify (string $password , string $hash)

http://php.net/password

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Various Attack Vectors
Now moving on to true ‘attacks’ …

8

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

SQL Injection

9

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

SQL Injection

10

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Security Hole:
$pdo->query("SELECT * FROM users
 WHERE name = '{$_POST['name']}' AND pass = '{$_POST['pass']}'");  

The Attack:
$_GET['name'] = "' or 1=1; //";

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

SQL Injection

11

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Solution:
$query = $pdo->prepare("SELECT * FROM users WHERE name = ? AND pass = ?");  
$query->execute(array($_POST['name'], $_POST['pass']));  

$name = $pdo->quote($_POST['name']);  
$pass = $pdo->quote($_POST['pass']);  
$pdo->query("SELECT * FROM users WHERE name = {$name} AND pass = {$pass}");  

or:

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Other Injection

12

Command Injection:

The user being able to inject code into a command line.

Unchecked File Uploads: The user being allowed to upload an executable file.

Code Injection: User being able to directly inject code. (DON’T USE EVAL!)

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Session Hijacking

13

One user ‘becoming’ another by taking
over their session via impersonation.

Avoid “Session Fixation”

Don’t use URL cookies for your sessions. Always regenerate Session IDs on a
change of access level.

Save an anti-hijack token to another cookie & session. Require it to
be present & match. Salt on unique data (such as User Agent)

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Session Fixation

14

A user being able to provide a known

session ID to another user.

The Attack:

session.use_cookies = 1
session.use_only_cookies = 1
session.cookie_httponly = 1

The Solution:

Don’t use URL cookies for your sessions.

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Session Fixation (Take 2)

15

Protect from more complicated fixation attacks, by
regenerating sessions on change of access level.

The Solution:

and

session_start();  
if ($user->login($_POST['user'], $_POST['pass'])) {  
 session_regenerate_id(TRUE);  
}  

session_start()  
$user->logout();  
session_regenerate_id(TRUE);  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Session Anti-Hijack Measures

16

Finally use anti-hijack measures to ensure user is legit

Note that IP changes or can be shared.

As happens with most other headers too.

Not a few lines of code. Store whatever unique you can about this user/browser combination and verify it hasn’t changed between loads.

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Se
ss

io
n

A
nt

i-H
ija

ck
 M

ea
su

re
s

17

private function _sessionStart() {  
 session_start();  
 if (!empty($_SESSION)) { // Session not empty, verify: 
 $token = $this->_hijackToken(); 
 $sh = empty($_SESSION['hijack']) ? NULL : $_SESSION['hijack'];  
 $ch = empty($_COOKIE['data']) ? NULL : $_COOKIE['data'];  
 if (!$sh || !$ch || ($sh != $ch) || ($sh != $token)) { // Hijacked! 
 session_write_close();  
 session_id(sha1(uniqid(rand(), TRUE)));  
 session_start();  
 setcookie('data', 0, -172800);  
 header("Location: http://www.example.com/");  
 }  
 } else { // Empty/new session, create tokens 
 $_SESSION['started'] = date_format(new DateTime(), DateTime::ISO8601);  
 $_SESSION['hijack'] = $this->_hijackToken(); 
 setcookie('data', $_SESSION['hijack']);  
 }  
}  
 
private function _hijackToken() {  
 $token = empty($_SERVER['HTTP_USER_AGENT']) ? 'N/A' : $_SERVER['HTTP_USER_AGENT'];  
 $token .= '| Hijacking is Bad mmmkay? |'; // Salt  
 $token .= $_SESSION['started']; // Random unique thing to this session 
 return sha1($token);  
}  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS (Cross Site Scripting)

18

A user sending data that is executed as script

Many ways this attack can come in, but in all cases: Everything from a user is suspect (forms, user-agent, headers, etc) When fixing, escape to the situation (HTML, JS, XML, etc) FIEO (Filter Input, Escape Output)

Don’t forget about rewritten URL strings!

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - Reflected XSS

19

Reflected XSS
Directly echoing back content from the user

The Security Hole:
<p>Thank you for your submission: <?= $_POST['first_name'] ?></p>  

The Attack:

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - Reflected XSS

20

Reflected XSS Directly echoing back content from the user

The Solution (HTML):
$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Wait, why is this a problem?

 The user can only hack themselves, right?

 1) Users can be directed to  
 your website via links.

 2) Also, users can be talked  
 into anything…

21

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - Stored XSS

22

Stored XSS You store the data, then later display it
The Security Hole:

<?php  
$query = $pdo->prepare("UPDATE users SET first = ? WHERE id = 42");  
$query->execute(array($_POST['first_name']));  
?>  

[...]
 
<?php  
$result = $pdo->query("SELECT * FROM users WHERE id = 42");  
$user = $result->fetchObject(); 
?>  
<p>Welcome to <?= $user->first ?>’s Profile</p>  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - Stored XSS

23

The Same!

Stored XSS You store the data, then later display it
The Solution (HTML):

$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - DOM XSS

24

DOM XSS What happens in JavaScript, stays in JavaScript

The Security Hole:
<script>  
$('#verify').submit(function() {  
 var first = $(this).find("input[name=first]").val();  
 $(body).append("<p>Thanks for the submission: " + first + "</p>");  
 return false;  
});  
</script>

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

XSS - DOM XSS

25

The Solution (Simple):
<script>  
function escapeHTML(str) {  
 str = str + ""; var out = "";  
 for (var i=0; i<str.length; i++) {  
 if (str[i] === '<') { out += '<'; }  
 else if (str[i] === '>') { out += '>'; }  
 else if (str[i] === "'") { out += '''; }  
 else if (str[i] === '"') { out += '"'; }
 else { out += str[i]; }  
 }  
 return out;  
}  
</script> But you have to deal with attr vs HTML vs CSS etc

So use this: https://github.com/chrisisbeef/jquery-encoder/

DOM XSS What happens in JavaScript, stays in JavaScript

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

CSRF (Cross Site Request Forgery)

26

A user having the ability to forge or force a

request on behalf of another user.

Complicated via JavaScript

Simplistically via IMG tag or POST forms

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

CSRF (Cross Site Request Forgery)

27

A user having the ability to forge or force a
request on behalf of another user.

The Attack:
<img width="1" height="1"
 src="http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock!" />  

<script>  
$.post({  
 url: 'http://quackr.example.com/quackit',  
 data: { msg: 'CSRF Attacks Rock!'}  
});  
</script>  

or

http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock
http://quackr.example.com/quackit'

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Protect via CSRF token

CSRF (Cross Site Request Forgery)

28

The Solution (on form):
<?php  
function generateToken() {  
 $token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
 if (!$token) {  
 $token = sha1(uniqid(mt_rand(), true));  
 $_SESSION['token'] = $token;  
 }  
 return $token;  
}  
?>  
<form method="POST" action="">  
 <input name="msg" value="" />  
 <input type="hidden" name="token" value="<?= generateToken() ?>" />  
 <input type="submit" />  
</form>

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Protect via CSRF token

CSRF (Cross Site Request Forgery)

29

The Solution (on submission):

<?php  
$token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
$check = empty($_POST['token']) ? false : $_POST['token'];  
 
if ($token && ($token == $check)) {  
 // SUCCESS - Process the form 
} else {  
 // FAILURE - Block this: 
 header('HTTP/1.0 403 Forbidden');  
 die;  
}  
?>  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Clickjacking

30

iframe { opacity: 0 }

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Clickjacking - Solution 1

31

The Solution:

Use specific header, to disallow site framing:

header('X-Frame-Options: DENY');

 
header('X-Frame-Options: SAMEORIGIN');

or

Became IETF standard RFC 7034 in October 2013

Doesn’t work in all browsers!

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Clickjacking - Solution 2

32

The Solution:
<html>  
 <head>  
 <style> body { display : none;} </style>  
 </head>  
 <body>  
 <script>  
 if (self == top) {  
 var theBody = document.getElementsByTagName('body')[0];  
 theBody.style.display = "block";  
 } else {  
 top.location = self.location;  
 } 
 </script> 
 </body>  
</html>  

Ensure you aren’t displayed in iFrame

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Server Level Security
Now moving on to true ‘attacks’ …

33

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Keep Your Stack Patched

34

No excuses. Keep all your software up to date!

Linux

Apache MySQL
PHP

Python
Ruby

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

DDOS & Similar Attacks

35

Good luck!

Rely on firewall features of your machines & hosting.

Hire a good ops team

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Man in the Middle

36

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Man in the Middle

37

The Solution: Use SSL

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

 php[architect]: https://www.phparch.com 
musketeers: http://musketeers.me .

Questions?
For this presentation & more:

http://eliw.com/

Twitter: @EliW

38

Rate this talk! 
https://joind.in/16769

https://www.phparch.com
http://musketeers.me/
https://joind.in/16769

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Bonus Subjects!
If Eli had too much coffee this morning…

39

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Brute Force Attacks

40

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Brute Force Attacks (Password)

41

CAPTCHA
IP rate limiting

Really only two primary defenses:

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Brute Force Attacks (CAPTCHA)

42

On the Form:

reCAPTCHA is free and easy to use

<?php require_once('recaptchalib.php'); ?>  
<form method="POST" action="">  
 <label>Username: <input name="user" /></label>
 
 <label>Password: <input name="pass" type="password"/></label>
 
 <?= recaptcha_get_html("YOUR-PUBLIC-KEY"); ?>  
 <input type="submit" />  
</form>  

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Brute Force Attacks (CAPTCHA)

43

On the Server:
<?php  
require_once('recaptchalib.php');  
$check = recaptcha_check_answer( 
 "YOUR-PRIVATE-KEY", $_SERVER["REMOTE_ADDR"],  
 $_POST["recaptcha_challenge_field"], $_POST["recaptcha_response_field"]);  
 
if (!$check->is_valid) {  
 die("INVALID CAPTCHA");  
} else {  
 // Yay, it's a human! 
}  
?>

https://developers.google.com/recaptcha/docs/php

https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Brute Force Attacks (Rate Limit)

44

The Solution:
Only allow so many fails per IP

$blocked = false;  
$cachekey = 'attempts.'.$_SERVER['REMOTE_ADDR'];  
$now = new DateTime();  
$attempts = $memcached->get($cachekey) ?: [];  
if (count($attempts) > 4) {  
 $oldest = new DateTime($attempts[0]);  
 if ($oldest->modify('+5 minute') > $now) {  
 $blocked = true; // Block them 
 }  
}  
if (!$blocked && $user->login()) {  
 $memcached->delete($cachekey);  
} else {  
 array_unshift($attempts, $now->format(DateTime::ISO8601));  
 $attempts = array_slice($attempts, 0, 5);  
 $memcached->set($cachekey, $attempts);  
}

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

More Password Info

45

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Password Hash Upgrades — PHP 5.5

 Also allows for upgrade paths for password security via
the password_needs_rehash() function:

46

$options = ['cost' => 12];
if (password_verify($password, $hash)) {
 // Success - Log them in, but also check for rehash:
 if (password_needs_rehash($hash, PASSWORD_DEFAULT, $options)) {
 // The password was old, rehash it:
 $rehash = password_hash($password, PASSWORD_DEFAULT, $options);
 // Save this password back to the database now
 }
} else {
 // Failure, do not log them in.
}

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Secondary Measures

47

- Showing a known photo on login

- Asking for date of birth

- Asking for first place of residence

- etc…

Typically used to thwart phishing attempts

All have mixed effectiveness

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

2-factor Authentication

 Having something beyond username/password to ensure
authentication is valid. Requires extra information that the
user must have on them.

 Originally involved keyfobs, or other physical devices that
had to be plugged into the computer.

 Today most commonly is done as sending an SMS to the
user (Facebook), or via a token generator such as Google
Authenticator for smartphones.

48

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Implementing 2FA

• Use Amazon SNS to send SMS upon login

• Use Twilio API to send SMS (or phone call)

• Use Google Authenticator Libraries:
- http://code.google.com/p/ga4php/
- https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

49

SMS Method:

Token Based 2FA:

http://code.google.com/p/ga4php/
https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Tips for Recovery
Wait, you just got a 2am phone call?

50

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Logging

51

You can’t react, if you don’t know what happened!

Log everything you can: Failed SQL queries
Detected hijack attempts Code (PHP) errors
Failed server connections

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Plans of Action

52

Be ready for a quick decision!

Shutdown Website

Remove Functionality
Let it Live

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Stupid Programmer Errors
Let’s clear the air on these …

53

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Unchecked Permissions

 Direct URL access to a protected file

54

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Unchecked Permissions

55

 Ability to URL-hack to access unauthorized data.

Web Security and You - Eli White - SunshinePHP - February 5th, 2016

Information leaks

 Specifically: Visible Error Handling

56

