
www.oneforall.events

Web Security Essentials

Eli White
Vice President — One for All Events

@EliW

http://www.oneforall.events

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Web Security
Introduction

2

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Course Information
 This course has been created to discuss Web Security. Specifically

as it relates to PHP Developers. Some of this course will be
discussing PHP, some will be JavaScript, and some will touch on
configuration & SQL.

 This course assumes the developer has a working knowledge of the
PHP, JavaScript, and SQL.

 This course will not cover physical machine security, or network
level intrusions. It is targeted at the developer.

3

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Topics... lots of them

 Securing Users
 Filesystem & Database
 Cookies
 Session Hijacking
 Passwords
 Brute Force Attacks
 2-factor authentication
 Encryption/Hashing
 Access Control

 XSS (Cross Site Scripting)
 CSRF (Cross Site Request Forgery)
 Click-Jacking
 SQL/Code/Command Injection

 File Upload Vulnerabilities
 Filter-Input Escape-Output
 Preparing for Recovery
 Online Resources
 … and more …

4

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Online vs Here

 Just a note:
 Course designed originally as online for 10 hours
 We may skip a few things or cover some items briefly
 We will most likely work through examples live together, and skip
things that were originally homework.

 Please ask if there is anything you want covered more or less

5

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

System & User
Section 1 

6

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

System Level Security

 We mentioned that this course won’t go over network or
true ‘system’ level security, but there are a number of basic
PHP/Web Server/Database things that we should cover.

7

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Filesystem Security

 Really comes down to one thing. Make sure that your webserver
(and therefore PHP) does not run as ‘root’.

 More so, make sure that the user it does run as, only has access to
to your ‘web’ directory, and only read access, not write access, to
the files. Only granting write access in specific needed cases.

 NOTE:  
This is commonly ignored advice, but offers great security in depth.

8

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Database Security

 Same advice as with filesystem. Make sure that the
database user you are using for access only has the
permissions that they need. (To specific databases)

 Consider even making the normal user only have read
access, and make separate connections with another
user when you need to write.

9

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

PHP Configuration (php.ini)

display_errors = Off  
display_startup_errors = Off

- Leave these off on your production server to not expose internal errors publicly,
which will expose code & filesystem.

default_charset = "utf-8"

- Set your character set explicitly

session.use_cookies = 1  
session.use_only_cookies = 1  
session.cookie_httponly = 1

- We will discuss session security more, but set your system to use cookies only
(and disallow JavaScript access). This greatly increases security of the sessions
making them harder to hijack.

10

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

PHP 5.3 or Earlier (php.ini)

magic_quotes_gpc = Off  
magic_quotes_runtime = Off  
magic_quotes_sybase = Off

- Magic quotes were a great idea 10 years ago, now, not so.

register_globals = Off

- Registering the $_GET and $_POST into the global variable space can cause
in-numerous untestable security flaws.  

request_order = "GP"

- You should only use $_REQUEST when you truly have a need, and use $_GET
and $_POST in typical practice. But for safety make sure that you remove
‘C’ ($_COOKIES) from it.

11

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Additional PHP Thoughts

 open_basedir = "/path/to/web/root"

- Forbids PHP from including files outside of this directory tree. 

 date.timezone = "UTC"

- Not directly a security flaw to have an unset/incorrect timezone, but might lead
to incorrect date math, causing a vulnerability.  

 Removing .php extension via rewrites/framework
- Exposing which endpoints on your server are PHP is truly an extremely minor

concern (as long as you stay up to date with security releases); however, it’s ugly.

12

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Cookie Security

 The #1 rule for cookies, is to never store anything in a
cookie that is able to be read & modified by users.
• IE: Never store: 'loggedin=true;user=bob'

• Hash/Encrypt/Obfuscate any data that you send to user

• Storing data in sessions, automatically handles this

13

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Cookie Usage

 Set your cookies only to the domain/path you need:

 Use secure-only cookies if on SSL:

 Set $httponly to disallow JavaScript access to PHP cookies:

14

bool setcookie (string $name [, string $value [, int $expire = 0
 [, string $path [, string $domain [, bool $secure = false
 [, bool $httponly = false]]]]]])

setcookie('uex', sha1($uid.'|'.$email), 3600, '/user', 'www.example.com');  

setcookie('uex', sha1($uid.'|'.$email), 3600, '/user', 'www.example.com', true);  

setcookie('uex', sha1($uid.'|'.$email), 3600, '/user', 'www.example.com', true, true);  

http://www.example.com

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise

 Create functions that automatically handles setting &
reading cookies in a more secure way for you:
• With a default timeout

• As httponly

• On HTTPS only, if detecting the request was HTTPS

• To your auto-detected subdomain only

• Bonus: Consider automatically obfuscating key names

 http://php.net/setcookie

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Session Security

 Much of session security was already covered in PHP
configuration. (No urlcookies, httponly sessions, etc)

 Ensure session storage (filesystem, memcached, database) is
secure. (PS. Don’t use filesystem)

 Consider changing your hash algorithm to something with less
chances of collision:

15

session.hash_function = 1 ; sha1(), PHP 5.0+  
session.hash_function = "sha512" ; Any hash_algos(), PHP 5.3+  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Password Hashing PHP 5.5

 Also allows for upgrade paths for password security via the
password_needs_rehash() function:

16

$options = ['cost' => 12];
if (password_verify($password, $hash)) {
 // Success - Log them in, but also check for rehash:
 if (password_needs_rehash($hash, PASSWORD_DEFAULT, $options)) {
 // The password was old, rehash it:
 $rehash = password_hash($password, PASSWORD_DEFAULT, $options);
 // Save this password back to the database now
 }
} else {
 // Failure, do not log them in.
}

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

User Permissions

 Make sure that any user on your website is restricted to a
minimum of the access that they need.

 If you have a complicated system of permissions (IE, more than:
Public, User, Admin), consider implementing Access Control Lists
(ACL).
• Many frameworks provide this ability:

- http://framework.zend.com/manual/2.2/en/modules/zend.permissions.acl.intro.html
- http://symfony.com/doc/current/cookbook/security/acl.html

17

http://framework.zend.com/manual/2.2/en/modules/zend.permissions.acl.intro.html
http://symfony.com/doc/current/cookbook/security/acl.html

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

User Session Permissions

 Always regenerate your session IDs when you
have a change of permissions. (A user logs in,
logs out, or re-authenticates as an admin):

18

The ‘true’ parameter causes it to completely delete the
old session.

Important to stop old sessions from hanging around.

(More on this later, in regards to Session Hijacking)

session_regenerate_id(true);

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Avoid Simple Access Flaws

 Direct URL access to a protected file

19

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Avoid Simple Access Flaws
Ability to URL-hack to access unauthorized data. 
Ensure user has rights to that data.

20

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Best Password Practices

 Rules for passwords: 

• Do not restrict people from using letters, numbers, special
characters, and most important, spaces.  

• It’s OK to have a minimum length (6?) but not max 

• Up to you, if you want to require varied symbols. It does force the
user into having a stronger password, but, it may encourage users
to write their password down on a sticky note.

21

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Password Hashing

 Do not store plain text passwords, always 1-way hash.

 Do not just use md5(), it is highly vulnerable to rainbow tables.
Even sha1() is better, but...

 The longer your hash takes to run, the longer (harder) it will
be for someone else to try to crack it. It’s OK if it takes a
while to generate a password check.

22

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Password Hashing PHP <5.5
 Use a more secure algorithm, such as sha512:

23

$str = "This is my secret data";  
$hash = hash('sha512', $str);  

Find a full list of supported algorithms via:
var_dump(hash_algos());  

Always generate & add a salt, to beat rainbow tables:
$password = "MyVoiceIsMyPassport";  
 
// Simple salt:  
$salt = "PHP FOR LIFE";  
$hash = hash('sha512', $salt . $password);  
 
// More fancy & Unique  
$salt = hash('sha1', uniqid(rand(), TRUE));  
$hash = $salt . hash('sha512', $salt . $password);  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Password Hashing PHP 5.5

PHP 5.5 has a built in password_hash function, that takes care of
salting, has a configurable cost, and provides mechanisms for
upgrading algorithms in the future:

24

string password_hash (string $password , integer $algo [, array $options])

Sample Usage:
$hash = password_hash('MyVoiceIsMyPassport', PASSWORD_DEFAULT);  
$hash = password_hash('rootroot', PASSWORD_DEFAULT, ['cost' => 12]);  

http://php.net/password

boolean password_verify (string $password , string $hash)

http://php.net/password

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Secondary Measures
 Many websites implement secondary measures...

 Sometimes these are primarily to thwart phishing attempts.
Such as showing a ‘known photo’ on login.

 Other websites might ask for a second piece of information
from the user’s profile, such as date of birth or 1st residence
address, to verify that this wasn’t a stolen password.

 These all have mixed effectiveness.

25

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Brute Force Attacks

 Brute force attacks involve either a computer, or a person,
just attempting to gain access over and over again, either
by guessing the password, or iteratively trying all of them.

 Two best solutions to this, are CAPTCHA & Rate Limiting.

26

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CAPTCHA

27

Don’t build your own solution: 

It won’t be as comprehensive as a stock solution.  

reCAPTCHA is free and easy to use.

 
http://recaptcha.org/ https://developers.google.com/recaptcha/docs/php

http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
http://recaptcha.org
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php
https://developers.google.com/recaptcha/docs/php

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CAPTCHA Implementation

28

On the Server:

<?php  
require_once('recaptchalib.php');  
$check = recaptcha_check_answer( 
 "YOUR-PRIVATE-KEY", $_SERVER["REMOTE_ADDR"],  
 $_POST["recaptcha_challenge_field"], $_POST["recaptcha_response_field"]);  
 
if (!$check->is_valid) {  
 die("INVALID CAPTCHA");  
} else {  
 // Yay, it's a human!  
}

On the Form:

<?php require_once('recaptchalib.php'); ?>  
<form method="POST" action="">  
 <label>Username: <input name="user" /></label>
  
 <label>Password: <input name="pass" type="password"/></label>
  
 <?= recaptcha_get_html("YOUR-PUBLIC-KEY"); ?>  
 <input type="submit" />  
</form>

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Rate Limiting

 Only allow so many failures, per IP address, over a predetermined
period of time.
• Blocks scripts which won’t wait

• Blocks repeated manual attempts

 Be way of large amounts of people behind one IP
• Consider pros/cons of session based approach vs IP

 Decide whether to block them visibly, or allow future attempts to
silently fail.

29

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Rate Limiting Example

30

$blocked = false;  
$cachekey = 'attempts.'.$_SERVER['REMOTE_ADDR'];  
$now = new DateTime();  
$attempts = $memcached->get($cachekey) ?: [];  
if (count($attempts) > 4) {  
 $oldest = new DateTime($attempts[0]);  
 if ($oldest->modify('+5 minute') > $now) {  
 $blocked = true; // Block them  
 }  
}  
if (!$blocked && $user->login()) {  
 $memcached->delete($cachekey);  
} else {  
 array_unshift($attempts, $now->format(DateTime::ISO8601));  
 $attempts = array_slice($attempts, 0, 5);  
 $memcached->set($cachekey, $attempts);  
}

IP-based Solution

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise

 Build a purely session based Rate Limiter, instead
of Memcached + IP checking.
• Store your data in the session.

• Base the ‘uniqueness’ on the session itself.

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Remember Me

 Most modern web applications want to provide a way for users
to not have to log in every time they use it.

 The solution are ‘Remember Me’ cookies.

 Essentially create a unique key for this user, combining various
aspects of their account, that is used as a secondary password.

31

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Sa
m

pl
e

Im
pl

em
en

ta
ti

o
n

32

function tokenRememberMe($user) {  
 $agent = $_SERVER['HTTP_USER_AGENT'];  
 return implode('|', [$user->id, $user->username, $user->password, $agent]);  
}  
 
function hashRememberMe($user) {  
 return password_hash(tokenRememberMe($user), PASSWORD_DEFAULT);  
}  
 
function setRememberMe($user) {  
 $length = 7776000; /* 3 months */  
 setcookie('Memory', $user->id . '|' . hashRememberMe($user), time()+$length);  
}  
 
function checkRememberMe() {  
 if (empty($_SESSION['user_id']) && ($memory = $_COOKIE[‘Memory’])) {  
 list($id, $hash) = explode('|', $memory);  
 $success = FALSE;  
 if ($id) {  
 try {  
 $user = new User($id); // Load the user:  
 if (password_verify(tokenRememberMe($user), $hash)) {  
 $success = TRUE;  
 }  
 } catch (Exception $e) {}  
 }  
 if ($success) { /* Login User */ }  
 else { setcookie('Memory', 0, time()-172800); }  
 }  
}

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Extra Benefit

 You can consider always setting a remember me cookie, even if
the user doesn’t choose it. But set it as a session cookie only.

 Now if for some reason your underlying session disappears, the
user is automatically logged back in.

33

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Forgetful Users

 Need a way for users to recover their accounts.

 You can consider using questions (first pet, favorite band), but
users often forget, and there have been public cases of people
using these to break in.

 Best practice is to create, save, and email (or SMS) the user a
random one-use code, that they use to gain entry.

34

 $code = hash('sha1', uniqid(rand(), TRUE));  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise

 Create a user class that mocks a real database backed
version.

• Give it methods for saving & checking passwords.

• Give it methods for generating Remember Me cookies.

• Create a method for generating/storing/checking
Forget Password Codes

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Man in the Middle

 Network level attack, where you think you are connecting to a
known server:

35

But unknown to you, someone else has set up a machine between
the server and your computer:

Solution: SSL

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

2-factor Authentication
 Having something beyond username/password to ensure
authentication is valid. Requires extra information that the user
must have on them.

 Originally involved keyfobs, or other physical devices that had to
be plugged into the computer.

 Today most commonly is done as sending an SMS to the user
(Facebook), or via a token generator such as Google Authenticator
for smartphones.

36

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Implementing 2FA

 SMS Method:
• Use Amazon SNS to send SMS upon login

• Use Twilio API to send SMS (or phone call)

 Token Based 2FA:
• Use Google Authenticator Libraries:

- http://code.google.com/p/ga4php/
- https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

37

http://code.google.com/p/ga4php/
https://www.idontplaydarts.com/2011/07/google-totp-two-factor-authentication-for-php/

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Post-Class Exercise

 Implement a 2-factor authentication scheme.
• Use either one of the SMS services, or the Google

libraries, to generate some 2-factor authentication.

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Filtering, XSS, and CSRF
Section 2

38

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Filtering

39

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Filtering Input

 Standard Rule for security is FIEO:
• Filter Input, Escape Output

- Filter the data that comes in, so that it’s as expected
- Escape the data going out, so that it’s safe

 Filtering input, is not ‘direct’ a security measure, but simplifies
security later, and provides security in depth.

 More layers means less chances of slipping through.

40

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Sanitize vs Validate

 Validate
• Check that the data is what was expected (an email address is an

email address), and refuse if not.

 Sanitize
• Attempt to convert the data into an expected value (convert any

strings to integers)

41

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

S vs V: Pros & Cons
 Validation

• Drawback is refusing data that could be figured out.
- Declining ‘+44 020-7638-8811’ as a phone number because of dashes
- Refusing ’42 towels’, when asking “How many?”, because non-int  

 Sanitization
• Drawback is accepting incorrect data

- Converting ‘4.5’ to 4, when using intval()
- Converting 'yes' to 0, when using intval()

 There are appropriate times, for both options to be used.

42

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Sanitizing: Expecting Input
 There are a number of built-in type functions:

43

$int = intval($input);  
$flt = floatval($input);  
$bol = boolval($input);  

Be wary though, you may get unexpected results:  
boolval('no') equals true;

Also some string functions that can help you:
$str = trim($input);  
$stp = strip_tags($input);
 

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Validating via ctype_*
 Validation can be done via regex, but ctype_* makes easy:

44

$test = ctype_alpha($input); // [A-Za-z] only  
$test = ctype_alnum($input); // [A-Za-z0-9]  
$test = ctype_digit($input); // [0-9]  
$test = ctype_xdigit($input); // [0-9A-Fa-f]  

Full list here: http://php.net/ctype

Also don’t forget: handles all numeric formats, IE +0123.45e6
$test = is_numeric($input);

  Sometimes you just gotta regex tho…

http://php.net/ctype

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

filter_var

 First provided in PHP 5.2: http://php.net/filter
• Allows you to specify data, and a predefined filter.

• Provides both SANITIZE & VALIDATE style filters.

45

mixed filter_var (mixed $variable [, int $filter = FILTER_DEFAULT [, mixed $options]])  
mixed filter_var_array (array $data [, mixed $definition [, bool $add_empty = true]])

 
mixed filter_input (int $type, string $variable_name [, int $filter = FILTER_DEFAULT [, mixed $options]])
mixed filter_input_array (int $type [, mixed $definition [, bool $add_empty = true]])  

These functions operate on any variable or array of yours:

These operate on the superglobal arrays, such as $_GET:

http://php.net/filter

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

<?php  
/* Example POST:  
$_POST = [ 
 'email' => 'adent@example.com',  
 'name' => 'Arthur P. Dent',  
 'meaning' => '42',  
 'favorites' => ['towel', 'lager', 'peanuts'], 
 'website' => 'http://hoopyfrood.com/',  
 'username' => 'arthurdent',  
 'password' => '******',  
]; */  
 
$args = [ 
 'email' => FILTER_VALIDATE_EMAIL,  
 'name' => FILTER_SANITIZE_STRING,  
 'meaning' => ['filter' => FILTER_VALIDATE_INT,  
 'options' => ['min_range' => 40, 'max_range' => 54]],  
 'favorites' => ['filter' => FILTER_SANITIZE_STRING,  
 'flags' => FILTER_REQUIRE_ARRAY],  
 'website' => FILTER_VALIDATE_URL,  
 'username' => ['filter' => FILTER_VALIDATE_REGEXP,  
 'options' => ['regexp' => '/^[A-Za-z0-9_]+$/']],  
 'password' => FILTER_UNSAFE_RAW,  
];  
 
$myinputs = filter_input_array(INPUT_POST, $args, TRUE);  

Ex
am

pl
e

46

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Discussion: Versioned Filtering
Some people save both the raw input, and the filtered copy in the
database, along with a version number.
Idea is that if you find a flaw in your filtering, you can create a new
‘version’, and re-apply it to the raw input.

47

Pros:
- Allows you the ability to protect yourself in the future more easily via re-filtering. 

Cons:
- You are storing potential attacks in the database.

- You can always write post-fix scripts.

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise

 Visit http://php.net/filter.filters and look through all the available
filters:
• Experiment with the filters, see how they each work.

• Make a sample form to accept various items such as emails, urls,
usernames, and random strings, experiment with the filters, filter
options, and different inputs.

• Bonus: Consider the application of these into an automated
framework, that takes all $_POST / $_GET input, applies filters,
resaves the data in a $data response, and then calls unset() on the raw
super-globals for safety.

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS

48

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS (Cross Site Scripting)

49

Don’t forget about rewritten URL strings!

Many ways this attack can come in, but in all cases:
Everything from a user is suspect (forms, user-agent, headers, etc)
When fixing, escape to the situation (HTML, JS, XML, etc)

A user sending data that is executed as script

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Types of XSS

 Reflected
• Directly echo’d back to the user. 

 Stored
• Saved (into the database) and later displayed to the user. 

 DOM
• Happens completely in JavaScript/Ajax.

50

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - Reflected XSS

51

The Security Hole:
<p>Thank you for your submission: <?= $_POST['first_name'] ?></p>  

The Attack:

Reflected XSS
Directly echoing back content from the user

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - Reflected XSS

52

Reflected XSS
Directly echoing back content from the user

The Solution (HTML):
$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Wait, why is this a problem?
 The user can only hack themselves, right?

 You are forgetting that users can be directed to your website
(even with a POST), via clicking a link.

 Also, users can be 
talked into anything,  
unfortunately.

53

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Live Example
(Reflected XSS)

54

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise
Find the

Bug

55

<html>  
<head><title>Beta Website</title></head>  
<body>  
 <header>Account</header>  
 <h1>Thanks for visiting our website</h1>  
 <?php if (!count($_POST)): ?>  
 <h2>Please let us know if you are interesting Beta Access:</h2>  
 <form method="POST" action="">  
 <label>Name: <input name="name" /></label>  
 <label>Email: <input name="email" type="email" /></label>  
 <label>Permission to Contact?  
 <input name="contact" type="checkbox" value="yes" /></label>  
 <input type="submit">  
 </form>  
 <?php else: ?>  
 <h2>Thank you for your submission!</h2>  
 <p>We have received the following submission and will contact  
 you when our website is ready:</p>  
  
 Name: <?= $_POST['name'] ?>  
 Email: <?= $_POST['email'] ?>  
 Permission: <?= $_POST['contact'] ?: 'No' ?>  
 IP: <?= $_SERVER['REMOTE_ADDR'] ?>  
 Browser: <?= $_SERVER['HTTP_USER_AGENT'] ?>  
  
 <?php endif; ?>  
</body>  
</html>

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - Stored XSS

56

The Security Hole:
<?php  
$query = $pdo->prepare("UPDATE users SET first = ? WHERE id = 42");  
$query->execute(array($_POST['first_name']));  
?>  

[...]
 
<?php  
$result = $pdo->query("SELECT * FROM users WHERE id = 42");  
$user = $result->fetchObject();  
?>  
<p>Welcome to <?= $user->first ?>’s Profile</p>  

Stored XSS You store the data, then later display it

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - Stored XSS

57

Stored XSS You store the data, then later display it

The Same!

The Solution (HTML):
$name = htmlentities($_POST['first_name'], ENT_QUOTES, 'UTF-8', FALSE);  

The Solution (JS):
$name = str_replace(array("\r\n","\r","\n"),
 array("\n","\n","\\\n"),addslashes($_POST['first_name']));  

The Solution (XML):
$name = iconv('UTF-8', 'UTF-8//IGNORE',
 preg_replace("#[\\x00-\\x1f]#msi", ' ',
 str_replace('&', '&', $_POST['first_name'])));  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Live Example
(Stored XSS)

58

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise - Find the Bug

59

<html>  
<head><title>My Website - <?= $page ?></title></head>  
<body>  
 <header class="<?= ($page == 'account') ?: 'active' ?>">  
 Account (<?= $user->username ?>)  
 </header>  
 <h1>Welcome to <?= $user->fullname ?>'s Account</h1>  
 <img src="<?= $user->headshot ?>" />  
 <p>BIO: <?= $user->bio ?></p>  
 <p>Latest Post: <?= $user->lastPost(); ?></p>  
</body>  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - DOM XSS

60

The Security Hole:

DOM XSS
What happens in JavaScript, stays in JavaScript

NOTE: JavaScript examples will use jQuery

<script>  
$('#verify').submit(function() {  
 var first = $(this).find("input[name=first]").val();  
 $(body).append("<p>Thanks for the submission: " + first + "</p>");  
 return false;  
});  
</script>

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

XSS - DOM XSS

61

DOM XSS
What happens in JavaScript, stays in JavaScript

The Solution (Simple?):
<script>  
function escapeHTML(str) {  
 str = str + ""; var out = "";  
 for (var i=0; i<str.length; i++) {  
 if (str[i] === '<') { out += '<'; }  
 else if (str[i] === '>') { out += '>'; }  
 else if (str[i] === "'") { out += '''; }  
 else if (str[i] === '"') { out += '"'; }
 else { out += str[i]; }  
 }  
 return out;  
}  
</script>

But you have to deal with attr vs HTML vs CSS etc

So use a library that handles encoding for you.

Or just never directly echo in JS, 
always roundtrip to the server.

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Live Example
(DOM XSS)

62

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

jQuery Encoder Usage

Since you need to escape output differently in JavaScript based upon
whether it’s being used as a tag name, CSS, attribute, class, etc.  

One library that can help you is jQuery Encoder:
https://github.com/chrisisbeef/jquery-encoder/

63

encodeForCSS(String input, char[] immune)  
encodeForHTML(String input)  
encodeForHTMLAttribute(String input, char[] immune)  
encodeForJavascript(String input, char[] immune)  
encodeForURL(String input, char[] immune)

Provided Methods:

https://github.com/chrisisbeef/jquery-encoder/

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

jQuery Encoder Example

64

<script>  
$.post('/user/srv/account', { $('form').serialize() }, function(data) {  
 $('#container').html( 
 '<div style="background-color: ' +  
 $.encoder.encodeForCSS(data.color) + '">' +  
 $.encoder.encodeForHTML(data.html) +  
 '</div>');  
 });  
</script>  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

<html>  
<head><title>Eli's Account</title></head>  
<body>  
 <h1>User: EliW</h1>  
  
 Name: Eli White  
 Company: musketeers.me  
  
<script src="lib/jquery-2.0.3.min.js"></script>  
<script>  
$(document).ready(function() {  
 $('ul').on('click', '.editable', function() {  
 var $orig = $(this);  
 var $input = $('<input />').val($orig.text());  
 $input.on('blur keydown', function(e) {  
 if (!e.keyCode || (e.keyCode == 13)) {  
 var $input = $(this);  
 var val = $input.val();  
 $input.replaceWith(''+val+'');  
 }  
 });  
 $orig.replaceWith($input);  
 });  
});  
</script>  
</body>  
</html>

65

Exercise
Find the

Bug

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CSRF

66

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CSRF (Cross Site Request Forgery)

67

A user having the ability to forge or force a

request on behalf of another user.

Complicated via JavaScript

Simplistically via IMG tag or POST forms

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CSRF (Cross Site Request Forgery)

68

A user having the ability to forge or force a request on

behalf of another user.

The Attack:
  

<script>  
$.post({  
 url: 'http://quackr.example.com/quackit',  
 data: { msg: 'CSRF Attacks Rock!'}  
});  
</script>  

or

or

<form method="POST" action="http://remote.example.com/endpoint">  
 <input type="hidden" name="msg" value="CSRF Attacks Rock!" />  
 <input type="submit" name="Super Awesome Button" />  
</form>

http://quackr.example.com/quackit?msg=CSRF+Attacks+Rock
http://quackr.example.com/quackit'

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CSRF (Cross Site Request Forgery)

Protect via CSRF token

69

The Solution (on form):
<?php  
function generateToken() {  
 $token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
 $expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
 if (!$token || ($expires < time())) {  
 $token = sha1(uniqid(mt_rand(), true));  
 $_SESSION['token'] = $token;  
 }  
 $_SESSION['tokenExpires'] = time() + 14400;  
 return $token;  
}  
?>  
<form method="POST" action="">  
 <input name="msg" value="" />  
 <input type="hidden" name="token" value="<?= generateToken() ?>" />  
 <input type="submit" />  
</form>

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

CSRF (Cross Site Request Forgery)

Protect via CSRF token

70

The Solution (on submission):
<?php  
$token = empty($_SESSION['token']) ? false : $_SESSION['token'];  
$expires = empty($_SESSION['tExpires']) ? false : $_SESSION['tExpires'];  
$check = empty($_POST['token']) ? false : $_POST['token'];  
 
if ($token && ($token == $check) && ($expires > time())) {  
 // SUCCESS - Process the form  
} else {  
 // FAILURE - Block this:  
 header('HTTP/1.0 403 Forbidden');  
 die;  
}  
?>  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Live Example
(CSRF)

71

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Post-Class Exercise

 Create your own toolkit (a library or class), that
handles CSRF token management for you. Give
the ability to:
• Create a new token, based on a specific key name

• Generate the <input> or JavaScript variable for you

• Validate the token on return

• BONUS: Create a wrapper for your Ajax calls, that
automatically adds in the CSRF token.

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Additional Concerns
Section 3

72

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Additional Attacks

 No less scary than before, just more focused

73

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Clickjacking

 Publicly hit the scene in 2008 when Twitter was hacked

 Involves tricking the user into actually physically making a click on
a remote website, without them realizing they did so. Thereby
getting around any CSRF protection. This is hard to explain, so
let’s watch a demo:

74

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Clickjacking Demonstration

75

iframe { opacity: 0 }

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Clickjacking - Solution 1

76

The Solution:

Use specific header, to disallow site framing:

header('X-Frame-Options: DENY');

 
header('X-Frame-Options: SAMEORIGIN');

or

Doesn’t work in all browsers!

Became IETF standard RFC 7034 in October 2013

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Clickjacking - Solution 2

77

The Solution:
<html>  
 <head>  
 <style> body { display : none;} </style>  
 </head>  
 <body>  
 <script>  
 if (self == top) {  
 var theBody = document.getElementsByTagName('body')[0];  
 theBody.style.display = "block";  
 } else {  
 top.location = self.location;  
 }  
 </script>  
 </body>  
</html>  

Ensure you aren’t displayed in iFrame

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Session Hijacking

78

One user ‘becoming’ another by taking
over their session via impersonation.

Avoid “Session Fixation”

Don’t use URL cookies for your sessions.

Always regenerate Session IDs on a change of access level.

Save an anti-hijack token to another cookie & session. Require it
to be present & match. Salt on unique data (such as User Agent)

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Session Fixation

79

A user being able to provide a known

session ID to another user.

The Attack:

session.use_cookies = 1
session.use_only_cookies = 1

The Solution:
Don’t use URL cookies for your sessions.

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Session Fixation (Take 2)

80

Protect from more complicated fixation attacks, by
regenerating sessions on change of access level.

The Solution:

and

session_start();  
if ($user->login($_POST['user'], $_POST['pass'])) {  
 session_regenerate_id(TRUE);  
}  

session_start()  
$user->logout();  
session_regenerate_id(TRUE);  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Session Anti-Hijack Measures

81

Finally use anti-hijack measures to ensure user is legit

The Solution:

Note that IP changes or can be shared.

As happens with most other headers too.

Not a few lines of code.
Store whatever unique you can about this user/browser
combination and verify it hasn’t changed between loads.

Web Security Essentials — Eli White — PHP UK — Feb 15th, 201782

Se
ss

io
n

A
nt

i-H
ija

ck
 M

ea
su

re
s

private function _sessionStart() {  
 session_start();  
 if (!empty($_SESSION)) { // Session not empty, verify: 
 $token = $this->_hijackToken(); 
 $sh = empty($_SESSION['hijack']) ? NULL : $_SESSION['hijack'];  
 $ch = empty($_COOKIE['data']) ? NULL : $_COOKIE['data'];  
 if (!$sh || !$ch || ($sh != $ch) || ($sh != $token)) { // Hijacked! 
 session_write_close();  
 session_id(sha1(uniqid(rand(), TRUE)));  
 session_start();  
 setcookie('data', 0, -172800);  
 header("Location: http://www.example.com/");  
 }  
 } else { // Empty/new session, create tokens 
 $_SESSION['started'] = date_format(new DateTime(), DateTime::ISO8601);  
 $_SESSION['hijack'] = $this->_hijackToken(); 
 setcookie('data', $_SESSION['hijack']);  
 }  
}  
 
private function _hijackToken() {  
 $token = empty($_SERVER['HTTP_USER_AGENT']) ? 'N/A' : $_SERVER['HTTP_USER_AGENT'];  
 $token .= '| Hijacking is Bad mmmkay? |'; // Salt  
 $token .= $_SESSION['started']; // Random unique thing to this session 
 return sha1($token);  
}  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

SQL Injection

83

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Security Hole:
$pdo->query("SELECT * FROM users
 WHERE name = '{$_POST['name']}' AND pass = '{$_POST['pass']}'");  

The Attack:
$_GET['name'] = "' or 1=1; //";

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

SQL Injection

84

A user having the ability to send data that is

directly interpreted by your SQL engine.

The Solution:
$query = $pdo->prepare("SELECT * FROM users WHERE name = ? AND pass = ?");  
$query->execute(array($_POST['name'], $_POST['pass']));  

$name = $pdo->quote($_POST['name']);  
$pass = $pdo->quote($_POST['pass']);  
$pdo->query("SELECT * FROM users WHERE name = {$name} AND pass = {$pass}");  

or

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Live Example
(SQL Injection)

85

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise - Fix the Hole

86

if (isset($_POST['type']) && isset($_POST['id'])):  
 $type = $_POST['type'];  
 $id = $_POST['id'];  
 $results = db()->query( 
 "SELECT *  
 FROM {$type}  
 WHERE id = {$_POST['id']}  
 ");  
 $data = $results->fetchObject();  
}

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Command Injection

87

The user being able to inject code into a command line.

The Security Hole:

The Attack:

The Solution:

$output = `convert {$_POST['option']}.jpg thumbnail.png`;  

$_POST['option'] = "; rm -rf /;";  

 $option = escapeshellarg($_POST['option']);  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Code Injection

88

The user being able to inject and execute raw PHP code.

The Security Hole:

The Attack:

The Solution:

eval("{$_POST['area']}::authenticate({$_SESSION['user']});");  

Don’t use eval()! Eval == Evil

$_POST['area'] = "rename('/etc/passwd', '/home/www/xyz.txt');";  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Unchecked File Uploads

89

The user being able to upload executable files or scripts. 
Or in some cases, being able to trick you into treating an

existing file on your system, as if it was an upload.

The Security Hole:

The Solution:

rename($_FILES['up_img']['tmp_name'], ‘/images/‘.$_FILES['up_img']['name']);  

if ($_FILES["up_img"]["error"] == UPLOAD_ERR_OK) {  
 $tmp_name = $_FILES["up_img"]["tmp_name"];  
 $name = $_FILES["up_img"]["name"];  
 $extension = pathinfo($tmp_name, PATHINFO_EXTENSION);  
 if (in_array($extension, ['gif', 'jpg', 'png']) {  
 move_uploaded_file($tmp_name, "/my/images/{$name}");  
 }  
}

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise
 Implement a file upload system that properly
handles safely processing the file uploaded via
POST:
• Documentation: http://php.net/file-upload

• Ensure your form uses enctype="multipart/form-data"

• Force the system to only accept certain files (ie
Images)

• Allow the user to specify a ‘category’ & save the files
into a separate directory per categeory.

• BONUS: Investigate the use of MAX_FILE_SIZE

• BONUS: Create a viewer to show/link to all uploads

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Preparation
For when you get the 2am phone call…

90

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Three Stages of Security

 Prevention

 Preparation

 Panic

91

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Discovery Methods

 In descending order of usefulness:
• Whitehat contacts you

• Hacker announces it, and exploits it

• Hacker just announces it

• User complaints

• Physical Demarcation

• Logs/Stats monitoring

92

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Immediate Response

 Three options: Completely depends on the situation:

93

Let it Live

Break Functionality

Shutdown Website

Be prepared to make a quick decision!

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

On Breaking Functionality
 It’s become common practice, for large websites, to isolate each of
their website features. 

• They are enabled, via a configuration file.
- Some go one step farther and allow a % of enable.  

• Not only easily allows you to turn off a security hole, but allows you
great flexibility in releasing & testing new code, or temporarily
disabling features during high load.

 Used by Facebook & Etsy for example.

94

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Finding the Breach

 So you now know that you have a security hole…

 You need to look for the specific cause, from knowing
all the aforementioned problems that we’ve discussed.

 Use all the clues that you can find, based upon the
visible traces left behind by the hacker.

95

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

If…the Hacker Posted It

 This is a good situation (in a way), you supposedly have the
exploit sitting live on a page, and you have access to that page:
• View the Page Source

• View the Generated Source

• Scan all included JavaScript and .js files

• Look for any iFrames

96

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Error Logs
 Make sure that you have a PHP Error Log enabled,
and preferably sent into a separate file to look at
easily.

 Some attacks might cause PHP errors, allowing
you insight into what the attacker was trying.
Plus it’s always good to log all errors, so that you
can find bugs before your users do.

97

error_reporting -1  
error_log "/var/logs/php.error.log"  

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exceptions & Services

 Services:
• Consider logging any connection failures to other services

that you run (such as caching), or errors returned from
external web services that you use. They are useful in
general & might be a source of security info.

 Exceptions:
• Consider implementing a generic exception handler to

catch any un-handled ones, and log the result with as
much information as you can for similar reasons.

98

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Action Logs

 An action log – is a separate log you keep, tracking actions
taken by users with as much detail as possible, this might
be logging in, adding a friend, editing their profile, or just
anything that you feel is useful to log for your application: 

• Track: Who, When, Action Taken, Remote IP, Refer, etc  

• Gives you an absolute source, to watch a tricky action.

99

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Keep a Failed SQL Log

 You absolutely need to log any SQL query that fails.
- (The same can be said for NoSQL solutions as well)

• Most everything ends up in the database.

• Hackers will not succeed on their first attempt.

• This will created malformed SQL commands

• Scan for common XSS terms (script, onclick, etc)

100

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Exercise
 We’ve discussed a number of types of logging. To handle

this, we will need to build a generic logging system:
• Make a function that handles writing messages to log files.

• Upon each call, allow specifying a ‘type’ of log message
- Write each type into a separate log file.

• Allow specifying a ‘severity level’ to the log message.
- Make what level is logged vs ignored configurable.

• Automatically add a timestamp to each entry.

• BONUS: Build this as a class with constants for severity.

• BONUS: Create an exception handler that auto-logs
exceptions.

• BONUS: Create a database query wrapper that logs failures.

• EXTENDED: Refactor to use other storage (such as database)

X

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

HTTP Logs are your Friend

 Make sure that you are keeping them! 

 You can browse the logs to find evidence of the hack.
• Limit your search to a known timeframe

• Look for odd or out of sequence events

• Scan for GET parameters that are improper

• Scan other fields, such as Refer and UserAgent

101

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Scan your database for bad data

 Look in the database for any bad data that somehow made it
through your filtering, or could be the culprit when not escaped.

 Query against any user-supplied fields, for common XSS terms:
• script, onclick, javascript:, onfocus, onload, etc

102

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Obscure Obscurities

 You’ve searched through all the basics places, you still can’t find
the security breach. Now what? Familiarize yourself with the
more obscure things: 

• Look at other user supplied data sources:
- Refer, User Agent, Cookies, Custom URLs …

• Encoding issues:
- UTF-8 (or not), Converting between encodings …
- htmldecode() after escaping, double escaping …
- Encoded JavaScript strings

103

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Resources
 http://owasp.org/

• A great resource, always has up-to-date security exploits

• Be wary of the ‘solutions’ though, user-edited wiki

 http://phpsec.org/
• Good information, though unfortunately out of date.

 http://phptherightway.com/ — http://phpbestpractices.org/ — http://phpdeveloper.org/

• Not security specific resources but are great general
information sources on PHP and include security as well.

104

http://owasp.org
http://phpsec.org
http://phptherightway.com/
http://phpbestpractices.org
http://phpdeveloper.org

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Questions?

105

One for All Events: 
www.oneforall.events

For this presentation & more:
eliw.com

Twitter: @EliW

https://www.oneforall.events/
http://eliw.com/
https://twitter.com/EliW

Web Security Essentials — Eli White — PHP UK — Feb 15th, 2017

Thanks!

X

Please send us feedback on how this class went to:

 training@phparch.com

If you are interested in extending your learning experience, we
offer many other core PHP programming courses from
beginner to expert.

We also produce books on PHP, our premier PHP magazine
covering all topics related to Web Development, host online
summits and run conferences.

Visit us at http://www.phparch.com/ for more information.

